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Abstract

As data shift or new data become available, updating clinical machine learning models may
be necessary to maintain or improve performance over time. However, updating a model can
introduce compatibility issues when the behavior of the updated model does not align with
user expectations, resulting in poor user-model team performance. Existing compatibility
measures depend on model decision thresholds, limiting their applicability in settings where
models are used to generate rankings based on estimated risk. To address this limitation,
we propose a novel rank-based compatibility measure, CR, and a new loss function that aims
to optimize discriminative performance while encouraging good compatibility. Applied to
a case study in mortality risk stratification leveraging data from MIMIC, our approach
yields more compatible models while maintaining discriminative performance compared to
existing model selection techniques, with an increase in CR of 0.019 (95% confidence interval:
0.005, 0.035). This work provides new tools to analyze and update risk stratification models
used in clinical care.

1. Introduction

As machine learning (ML) models become increasingly integrated into clinical workflows,
understanding the impact of model updates on these workflows and users is crucial. Mod-
els may be retrained and updated as new data become available to maintain or improve
performance over time (Finlayson et al., 2021; Jenkins et al., 2021; Davis et al., 2022). For
example, Memorial Sloan Kettering Cancer Center’s prostate cancer outcome prediction
models are updated annually (Vickers et al., 2017). While primarily intended to improve
model performance, model updating can also affect users’ expectations, i.e., how users be-
lieve a model will perform given specific examples or patients. When models behave in
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Figure 1: Backwards trust compatibility (CBT, Bansal et al. (2019b)) vs. Rank-based com-
patibility (CR, proposed). A model is used to stratify patients at risk for an
outcome (black) from those that are not (white). Both the original and updated
models have decision thresholds independently set to maximize accuracy on the
validation set (shown). On this set, the original model has an accuracy of 9

11 and
an AUROC of 26

30 . The updated model switches the order of patients highlighted
in magenta, resulting in higher accuracy 10

11 and AUROC 28
30 . Out of the 9 patients

correctly labeled by the original model the updated model labeled 8 correctly, this
fraction, 8

9 , is C
BT. This measure depends on the model decision thresholds. Our

compatibility measure, CR, evaluates the ordering of patient-pairs. Of the 26
patient-pairs correctly ordered by the original model, the updated model cor-
rectly ordered 25 (makes an error on patient-pair E-F), yielding a CR of 25

26 .

unexpected ways (e.g., make mistakes in situations where they were previously accurate),
user-model team performance can suffer (Bansal et al., 2019b; Guo and Yang, 2020). Thus,
selecting updated models based solely on discriminative performance may be insufficient.
Model developers may need to consider the potential disruption to existing workflows and
alignment with user expectations in addition to discriminative performance (Bansal et al.,
2019b; Zahedi and Kambhampati, 2021). This creates a need for practical tools to es-
timate how updated models might influence user expectations without directly querying
users (Bansal et al., 2021). Fundamentally, we would like a way to answer this question: to
what extent does an updated model retain the correct behavior of an original model?

To this end, compatibility measures assess how much an updated model may disrupt
a user’s mental model compared to the original model and an evaluation dataset. While
researchers have proposed compatibility measures for supervised classification, like the back-
wards trust compatibility measure, these existing measures depend on a decision threshold
(Bansal et al., 2019b). However, selecting a single fixed threshold may not be appropriate
in many settings. In the context of patient risk stratification tools, decision thresholds
can depend on system constraints or user preferences (Wynants et al., 2019; Gorski et al.,
2017). Similar to how the receiver operating characteristic curve evaluates discriminative
performance across all decision thresholds, there is a need for compatibility measures that
are independent of a threshold.

Given this gap, we propose a novel rank-based compatibility measure that estimates the
probability that an updated model will correctly rank a pair of discordantly labeled pa-
tients (a patient-pair), given that the original model was correct. This new measure offers
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Figure 2: CBT is sensitive to the choice of both model decision thresholds. Both models have
perfect rank-based discrimination (i.e., AUROC = 1). Depending on the updated
decision threshold, CBT may be 1

2 (red), 3
4 (yellow), or 1 (green). Regardless of

the model decision threshold, CR is 1 for this example.

a broader evaluation framework for model updates used in risk stratification and ranking,
and applies in settings where model outputs are used for clinical resource allocation deci-
sions. By considering the concordance between model rankings, we can proactively detect
potentially harmful updates and avoid negative impacts on user-model team performance.
Figure 1 provides an overview of our proposed approach, illustrating its relationship to
existing performance and compatibility measures. Figure 2 illustrates the limitations of
backwards trust compatibility compared to rank-based compatibility. In this work, we also
demonstrate how our new measure relates to model discriminative performance and develop
a loss function that can be used to directly optimize for compatibility.

Generalizable Insights about Machine Learning in the Context of Healthcare

Healthcare has witnessed an explosion of ML models in recent years, and it is a domain
in which the task of ranking patients based on risk arises frequently. At the same time,
models must be updated to retain clinical utility. For example, the Epic sepsis model, a
patient deterioration model used by tens of thousands of clinicians in the United States,
was recently updated in light of reports of poor performance (Gerhart and Thayer, 2021;
Wong et al., 2021; Ross, 2022). We focus on a similar case study in which we stratify pa-
tients according to their risk of in-hospital mortality. While it may seem that discriminative
performance must suffer to maintain compatibility, we show that developers can generate
compatible updated models without negatively affecting discriminative performance by us-
ing our proposed loss function during training. Compared to updating approaches that
ignore compatibility, or use existing compatibility measure, this work facilitates model up-
dates that are more consistent with clinicians’ expectations and thus may be more readily
accepted and adopted in practice.

Our main contributions are as follows:

• To the best of our knowledge, we introduce the first rank-based compatibility measure
based on the concordance of risk estimate pairs.
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• We characterize the extent to which the new compatibility measure may vary over
potential model updates.

• We introduce a loss function that incorporates ranking incompatibility loss, which can
be used to train model updates with improved rank-based compatibility characteris-
tics.

• Using MIMIC-III, we present empirical results that demonstrate how the proposed
loss function leads to improved rank-based compatibility without a significant decrease
in AUROC compared to standard model selection approaches.

2. Problem Setup & Background

In the context of learning risk stratification models, a patient i is represented by the tuple
(xi, yi), where xi ∈ Rd represents the feature vector and yi ∈ {0, 1} represents the binary
label (e.g., outcome). Risk stratification model, f(·), outputs risk estimates, p̂i ∈ [0, 1]
that estimate Pr(yi = 1|xi). These risk estimates can be converted to predicted labels,
ŷi = 1(p̂i > τ), where τ is some decision threshold.

We seek to assess the impact on user expectations when updating an original model,
fo(·), to an updated model, fu(·). Note that the original and updated models are spe-
cific instantiations of the risk stratification models introduced above. They produce risk
estimates denoted as p̂oi and p̂ui , respectively. We refer to the combination of an original
and updated model as a model-pair. Decision thresholds for the original and the updated
models are τ o and τu, respectively.

The original and candidate updated risk stratification models are evaluated on a held-
out set of patients, denoted as I. This set can be partitioned into two mutually exclusive
subsets based on patient labels: 0-labeled patients, I0, and 1-labeled patients, I1. The size
of these subsets of patients are denoted as n0 and n1, respectively, and their sum, n, is the
cardinality of I. We formalize the notion of a patient-pair, a pair of patients i and j that
do not share the same label (i.e., i ∈ I0 and j ∈ I1). The total number of patient-pairs,
m, is the product n0n1. We denote the number of patient-pairs correctly ranked by the
original and updated models as mo+ and mu+, respectively. Both mo+ and mu+ are integers
taking on values between 0 and m inclusively. Given an original model, we aim to select an
updated model that achieves good discriminative performance and compatibility.

2.1. Discriminative Performance

Discriminative performance measures a model’s ability to separate patients with differ-
ent labels (Harrell Jr et al., 1996). The area under the receiver operating characteristic
curve (AUROC) is widely used to evaluate the discriminative performance of risk stratifi-
cation models since it evaluates performance across all decision thresholds τ . The AUROC
corresponds to the probability of correctly ranking two patients with differing labels based
on the risk estimates produced by the model. It may be estimated by counting the num-
ber of patient-pairs ranked correctly by a model, mo+, and then normalizing by the total
number of patient-pairs m (Hanley and Mcneil, 1982):
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AUROC(fo) =

∑
i∈I0

∑
j∈I1

1(p̂oi < p̂oj)

m
=

mo+

m
(1)

The AUROC ranges between 0 and 1; a value of 0.5 corresponds to an ordering that is no
better than random. The AUROC is the binary case of the concordance index (c-index),
and both are related to the Wilcoxon-Mann-Whitney U statistic (Harrell, 1982; Kendall,
1938; Harrell Jr et al., 1996).

2.2. Backwards Trust Compatibility

Currently, backwards trust compatibility (CBT) is the primary compatibility measure de-
scribed in the literature (Bansal et al., 2019b,a). CBT measures the agreement between
the true label and the predicted labels produced by the original and updated models by
counting the number of patients both labeled correctly and normalizing by the number of
patients the original model labeled correctly:

CBT(fo, fu) =

∑
i∈I
1(yi = ŷoi ) · 1(yi = ŷui )∑

i∈I
1(yi = ŷoi )

(2)

CBT depends on an evaluation set of patients, I, and values range between 0 and 1. CBT = 0
when the updated model mislabels all the patients labeled correctly by the original model,
and CBT = 1 when the updated model correctly labels all the patients the original model
got correct. CBT is not symmetric, as CBT(fo, fu) does not necessarily equal CBT(fu, fo).
CBT is expected to decrease in settings with dataset shifts as the feature-label relationships
captured by the model-pairs differ (Srivastava et al., 2020).

In the context of patient risk stratification models, calculating CBT requires first thresh-
olding risk scores to produce binary predictions. However, many settings in healthcare do
not use a decision threshold (Wynants et al., 2019). For example, patients in the emergency
department may be stratified by continuous risk estimates, and surgeons may use different
risk thresholds to recommend surgery. In use cases where there are multiple thresholds, CBT

may be computed multiple times; however, this is problematic for several reasons. First, the
evaluation grows proportionally with the number of thresholds being considered. Second,
there is limited utility in doing so for cases with a class imbalance (see Appendix Section
C.6) Third, CBT is sensitive to the selection of thresholds, and poorly chosen thresholds
could lead to a model with good discrimination being evaluated poorly, as shown in Figure
2. These suggest a need for a compatibility measure that applies directly to continuous risk
estimates without thresholding.

3. Methods

We present our proposed rank-based compatibility measure, CR, which measures compati-
bility independent of a decision threshold by examining the ranking concordance of patient-
pairs. While related to the AUROC, we hypothesize that optimizing discriminative model
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Table 1: Relationship between original and updated model AUROC, proportion of patient-
pairs and count variables.

Original Model Original Model
Ranks Correctly Ranks Incorrectly

Updated Model
Ranks Correctly

ϕ++ = m++

m ϕ−+ = m−+

m AUROC(fu) = mu+

m

Updated Model
Ranks Incorrectly

ϕ+− = m+−

m ϕ−− = m−−

m 1−AUROC(fu)

AUROC(fo) = mo+

m 1−AUROC(fo)

performance by minimizing binary cross-entropy loss when training models may not nec-
essarily lead to high CR. Thus, we propose a new loss function based on a differentiable
approximation of CR that can be used when training updated models.

3.1. Rank-Based Compatibility

The rank-based compatibility, presented in Equation 3, compares the ranking produced
by the updated model against the ranking produced by the original model.

CR(fo, fu) :=

∑
i∈I0

∑
j∈I1

1(p̂oi < p̂oj) · 1(p̂ui < p̂uj )∑
i∈I0

∑
j∈I1

1(p̂oi < p̂oj)
(3)

Given a set of evaluation patients, I, CR corresponds to the number of patient-pairs that
both models rank correctly normalized by the number of patient-pairs that the original
model ranked correctly. In contrast with CBT, which operates by counting patients, CR

operates on patient-pairs produced by the mutually disjoint subsets I0 and I1. CR measures
the concordance of ranking patient-pairs and ranges from 0 to 1. In contrast, CBT measures
concordance with respect to binary patient predictions.

Although this work focuses on risk stratification models that operate over patients with
binary outcomes, CR is not limited to this setting; we present a general form of CR in
Appendix Equation 6.

Relationship to AUROC. Both CR and AUROC involve counting correct patient-pair
rankings. We introduce several ancillary rank-based compatibility variables to clarify how
CR relates to AUROC. Four proportion of patient-pairs (POP) variables measure how two
models rank (correctly vs. incorrectly) patient-pairs.

The POP variables, ϕab, follow a convention where a represents how the original model
ranks patient-pairs correctly (+) vs. incorrectly (−), and b represents the same information
for the updated model. For example, the POP variable for patient-pairs correctly ordered
by both models is denoted by ϕ++, and the proportion of patient-pairs incorrectly ordered
by both models is ϕ−−. The four POP variables sum to 1. From the POP variables, one can
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calculate the AUROC of each model (e.g., AUROC(fo) = ϕ+++ϕ+−). Each POP variable
is proportional to a patient-pair count variable: m++,m+−,m−+, and m−−, which follow
the same ·ab notation. The relationships among the POP variables, the count variables, and
discriminative performances can be expressed in a tabular manner, as depicted in Table 1.

From these relationships, CR = m++

mo+ = ϕ++

AUROC(fo) .

Rank-Based Compatibility Lower Bound. Given AUROC(fo) and AUROC(fu), we
can bound all POP variables (see Appendix Section B.2). Here, we assume that 0.5 <
AUROC(fo) ≤ AUROC(fu) ≤ 1, yielding the following lower bound for the rank-based
compatibility:

AUROC(fo)+AUROC(fu)−1
AUROC(fo) ≤ CR(fo, fu)

This bound can be used to contextualize the CR of an update, as the range of CR changes
depending on the model AUROCs being considered. The lower bound of CR increases with
respect to the AUROC of the updated model (shown graphically in Appendix Section
B.3). We note that the upper bound is always 1 for the model updating region we are
interested in.

3.2. Optimizing for Rank-Based Compatibility

While standard model training and selection procedures that typically focus on discrimi-
native performance will result in a larger lower bound for CR, one may choose to optimize
directly for CR. However, as defined, CR is non-differentiable due to the ranking indicator
function, 1(p̂i < p̂j). To facilitate the use of rank-based incompatibility loss in gradient-
based optimization, we introduce a differentiable approximation of rank-based compatibil-
ity:

C̃R(fo, fu) =

∑
i∈I0

∑
j∈I1

σ(p̂oj − p̂oi ) · σ(p̂uj − p̂ui )∑
i∈I0

∑
j∈I1

σ(p̂oj − p̂oi )

This approximation replaces the ranking indicator function used to evaluate patient pairs
with a ranking sigmoid function:

σ(d̂ji) =
1

1 + exp(−s · d̂ji)

Where d̂ji is the difference in risk estimates produced for a patient pair (i.e., d̂ji = p̂j − p̂i
and ranges between −1 and 1). A correct ranking corresponds to d̂ji > 0 and an incorrect

ranking corresponds to d̂ji < 0. The sigmoid function maps this to a value between 0
and 1, closer to the behavior of the ranking indicator function (Han and Moraga, 1995).
A hyperparameter, s, controls the spread of this mapping. Note that using a sigmoid to
overcome discontinuity in the loss function is similar to work introduced to optimize for the
AUROC directly (Yan et al., 2003).

Risk stratification models are often trained by minimizing the binary cross-entropy loss
LBCE . This attempts to optimize the discriminative performance of the model by reducing
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the probability estimates for 0-labeled patients and increasing them for 1-labeled patients,
and indirectly optimizes the correct ranking of patient-pairs, the AUROC (Cortes and
Mohri, 2003). However, LBCE only examines the relationship between a patient’s label
and the risk estimates produced by a model. To incorporate rank-based compatibility, we
augment model update training to incentivize rank-based compatibility, using a weighted

combination of binary cross-entropy and L̃R = 1− C̃R:

αLBCE + (1− α)L̃R where α ∈ [0, 1] (4)

Hyperparameter α controls the trade-off between discriminative performance and compat-
ibility. During training, the predictions produced by the original model are incorporated
into the loss function.

4. Experiments & Results

We focus on understanding and engineering model updates in terms of CR using a real-
world benchmark dataset. While CR could be used as a validation metric when selecting
among candidate models during an update procedure, we hypothesize that by including

C̃R in the loss function, we can achieve better compatibility without paying a penalty in
terms of AUROC. To test this hypothesis, we generated and analyzed model updates on
the MIMIC-III mortality prediction dataset.

Questions. Our experiments seek to answer two related questions:

1. What is the empirical distribution of CR achieved using standard model updates when
using real data? (Section 4.2, Figure 4)

2. Compared to standard model update generation and selection approaches, can we use

the rank-based incompatibility loss, L̃R, to generate updates with better CR? Can this
be accomplished without a loss of AUROC? (Section 4.3, Figures 5, 6, 7, 13, and
14)

4.1. Data & Model Updating Setup

Dataset & Task. We use Bansal et al. (2019b)’s work as foundation for our experimental
setup. Their experimental work analyzing CBT in the setting of updating an in-hospital
mortality prediction model served as a template for our main analyses. In order to maintain
consistency and enable comparisons between CBT and CR we modeled our predictive task,
dataset splits, and model architectures considered off of their initial experiments.

Like Bansal et al. (2019b), we employed the MIMIC-III dataset (Johnson et al., 2016),
with the goal of predicting in-hospital mortality based on the first 48 hours of a patient’s
ICU stay, with the population and task defined by Harutyunyan et al. (2019). The data were
transformed using FIDDLE (Tang et al., 2020). For details regarding the data inclusion
and transformation, please see the procedures detailed by Tang et al. (2020). Since our goal
wasn’t to learn the best possible mortality prediction tool, but to investigate the applica-
bility of CR, we reduced the number of features from 350, 832 to 35, 000, for computational
efficiency. This was done by random sampling.
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We randomly split the MIMIC-III data into three disjoint datasets. Two of these
datasets were allocated for model development and validation. The third dataset was re-
served for held-out evaluation. 8, 577 patients in the MIMIC-III dataset meet the in-hospital
mortality inclusion criteria defined by Harutyunyan et al. (2019). The datasets were split
similarly to Bansal et al. (2019b), with 1, 000 allocated to the original model dataset, 5, 000
were assigned to the updated model dataset, and 2, 577 held-out for the evaluation dataset.
The two model datasets were used to develop and validate the original and updated mod-
els. The model datasets were each split equally (50/50%) into development and validation
datasets. The dataset partitions and their sizes are depicted in Figure 3.

Figure 3: The MIMIC-III mortality data was partitioned into three datasets. Two of these
datasets were allocated for model development and validation, and one was held-
out for evaluation. Model-pairs were evaluated on the evaluation dataset.

Original model training & selection. Original models were trained using regularized
logistic regression. L2 regularization strength {0.1, 0.01, 0.001} was selected to maximize
validation AUROC.

Updated model training & selection. Two different types of updated models were
created to assess standard updating approaches against our proposed loss function. Stan-
dard updates, “BCE models”, were trained to minimize LBCE subject to regularization.
The same regularization weights used for the original models were available for the updated
models.

Using the same original model and data, we generated additional updated models, “RBC
models” based on a loss function that incorporates LR (Equation 4), sweeping α in the
set {0, 0.1, 0.2, ..., 0.9, 1}.

Updated models from the “BCE” and “RBC models” were selected based on maximizing
the following validation function:

βAUROC(fu) + (1− β) CR(fo, fu) where β ∈ [0, 1] (5)

Evaluation. The selected updated models were evaluated in terms of CR and AUROC
on the held-out evaluation dataset. The process of splitting the data, training model-pairs,
and evaluation was replicated 40 times.
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4.2. Rank-Based Compatibility Distribution

We first investigate: What is the empirical distribution of CR achieved using standard model
updates (i.e., minimizing the binary cross-entropy loss) when using real data? Using the
experimental setup described above, we created 150 standard updated models for each orig-
inal model, minimizing LBCE . To introduce variation, these 150 candidate “BCE models”
were created by combining dataset resampling, shuffling, and regularization weights. The
updated model development dataset was either resampled with replacement (45 of the times)
or shuffled (5 of the times, which yields difference in models due to our use of stochastic
gradient descent) and then models were trained using binary cross-entropy loss with one of
three L2 regularization weights ((45 + 5) · 3 = 150).

We calculated the AUROC of the original model and the resultant CR and AUROC
across the candidate update models (Figure 4). Across the 150 “BCE models,” empirical
95% confidence intervals were calculated for AUROC(fu), and violin plots were generated
for CR.

Figure 4: CR Distribution For Model Updates on the MIMIC-III Mortality Task. An orig-
inal model was selected for each replication and 150 “BCE models” were gen-
erated as candidate updates. We plot the AUROC of the original model (blue
dots) and updated “BCE models” (red, 95% confidence intervals). We also show
the expected lower bounds for CR (light gray). Finally, the “BCE models” CRs
distribution are plotted as violin plots (gray).

The observed CR values for the set of candidate updates vary across a portion of the
feasible range (between the lower1 and upper bounds). We note that the observed distri-
butions of CR shifts in relation to the AUROCs of the models. To control for this shift, we

1. Note, that the lower bound is presented as a range. This is because each candidate update model has a
separate lower bound depending on its AUROC.
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can examine the POP variable ϕ++. We see that the distribution of ϕ++ for this exper-
iment tends to a central value; this is shown and discussed in Appendix Section C.4.
These results show the behavior of CR for one data-generating process, where we see some
variation in CR values that provide limited options for model developers to select among.
Additionally, we see that larger CR values are possible but not observed through standard
update generation procedures (this is the space above the observed CR violin plots in Fig-
ure 4). These findings are underscored in an analytical sketch discussed in Appendix
Section B.5. All together, these results mean that model developers may be constrained if
they wish to develop updated models that optimize for CR using standard update generation
procedures.

4.3. Weighted Loss vs. Standard Updated Model Selection

We now investigate our second question: Compared to optimizing for LBCE alone, does
incorporating the rank-based incompatibility loss, LR, generate updates with better CR?

For each replication, we generated 150 “BCE models” using the generation procedure
described above. For each value of α ∈ {0, 0.1, 0.2, ..., 0.9, 1}, we also generated 3 “RBC
models”. This was done by sweeping the regularization strengths used above. Aside from
the objective function used during training (and early stopping), other aspects of model
training and selection were held constant across approaches. To give the baseline the best
chance, we resampled and shuffled the training data while training the BCE models to more
fully explore the space of potential updates (resulting in 150 updates instead of 3). The
best “BCE” and “RBC models” from these model sets were selected based on validation
performance using Equation 5. We compare the resulting “BCE” and “RBC models”
by calculating the difference in rank-based compatibility, ∆ CR, and difference in AUROC,
∆AUROC (an example of this calculation can be found in Appendix Section C.2). We
repeated this process 40 times, for every value of α and every value of β ∈ {0, 0.1, ..., 0.9, 1}
and compared the mean differences in both CR and AUROC.

Results are displayed in Figure 5. There is a trade-off between AUROC and CR.
For many α-β combinations, there is a significant gain in CR (blue) at the cost of lower
AUROC (red) when using the proposed objective function during optimization. However,
we note many cases in which there is a gain in compatibility without paying a penalty
in terms of AUROC. For example, when α = 0.5 and β = 0.5, we achieve a significant
gain in compatibility of ∆ CR = 0.019 (95% confidence interval: 0.005, 0.035) with an
∆AUROC = −0.009 (−0.030, 0.011).2 By incorporating LR during training, it is possible
to achieve improved compatibility without compromising discriminative performance. Out
of the 121 α-β combinations, 57 demonstrate statistically significant improvements in CR

while maintaining AUROC; see Appendix Section C.5 for further discussion.
Examining results across replications for an α = 0.6 while we vary β Figure 6, we see

that across selection options, the “RBC model” generally provides a better CR (statistically
significant for β ≤ 0.6) without a significant decrease in AUROC (i.e., ∆AUROC is at or
close to zero). In Figure 7, we set β = 0.6 during the selection process for both the “RBC
models” and the “BCE models”, and sweep α during training “BCE models”. Again,

2. The “RBC models” had the following performance: CR = 0.966 (0.948, 0.979) AUROC = 0.828 (0.804,
0.855) vs. “BCE models” with CR = 0.947 (0.932, 0.963)
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Figure 5: Performance Differences Between “RBC Models” and “BCE Models” With Vari-
ation of α and β. Mean value of ∆ CR on the left and mean value of ∆AUROC on
the right, blue shows improvement of “RBC Models” over “BCE models” and red
shows degradation. For a large majority of α-β pairs, there is an improvement
in mean CR. For a smaller majority, there is a degradation in mean AUROC.
This suggests that there is a trade-off between AUROC and CR, with improved
CR coming at the cost of AUROC. Although this trade-off exists, we note that
the degradations in AUROC are often not statistically significant, while the im-
provements in CR are. This is shown and discussed in Appendix Section C.5.

we observe that for specific α values (e.g., α = 0.3 − 0.6), we can significantly improve
compatibility without penalizing AUROC performance.

These empirical results suggest that by incorporating rank-based compatibility into the
objective function during training, we can generate model updates with larger CR values than
obtained through standard update generation procedures (i.e., minimizing for LBCE alone).
Moreover, while there is often a trade-off between CR and AUROC, achieving gains in CR

while maintaining AUROC(fu) is possible.

5. Discussion & Conclusion

When selecting among potential updated clinical risk stratification models, it may be impor-
tant to consider compatibility with existing models already in use. In this study, we propose
the first rank-based compatibility measure, CR, which measures the concordance in ranking
between two models. We illustrate the connection between CR and discriminative model
performance. This relationship suggests that increased rank-based compatibility accompa-
nies improved discriminative performance, as the lower bound of rank-based compatibility
increases as each model’s discriminative performance increases. Despite this relationship,
we show empirically that it is improbable to observe very high levels of rank-based compat-
ibility through standard updated model development, which tends to focus on optimizing
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Figure 6: Performance Difference for α = 0.6 Sweeping Across β. Comparing ∆ CR and
∆AUROC for various β values. We see that for all β values, there is no statis-
tically significant degradation in AUROC while for β values less than 0.7 we see
improvement in CR. This suggests that “RBC models” yield a benefit over “BCE
models” in this regime.

discriminative performance. These findings motivate methods that enable developers to
build models with good discriminative performance and rank-based compatibility. As such,
we introduce a new differentiable rank-based incompatibility loss function that can be used
when training updated models to further optimize for rank-based compatibility.

We used the MIMIC-III dataset to compare our proposed approach to generating model
updates to a standard approach that optimizes for binary cross-entropy alone. Our re-
sults highlight standard updated model development’s limitations in identifying model up-
dates with very high compatibility. Using our proposed approach, we identify models with
equivalent discriminative performance yet significantly better compatibility. However, if
rank-based compatibility is greatly emphasized over discriminative performance, then im-
provements may come at a cost.

The rank-based compatibility measure serves a different role than the original backwards
trust compatibility measure proposed by Bansal et al. (2019b). Depending on the use case,
one may choose one over the other. Use cases that strongly depend on decision thresholds,
such as sending a notification when a patient risk estimate exceeds a specific threshold,
may correspond to clinician mental models best represented by CBT. In settings where
the decision may depend on the state of the system, such as hospital admission decisions,
which are impacted by the number of patients in the emergency department (Gorski et al.,
2017), the CR may better represent clinician mental models because it is not tied to a
fixed threshold. Additionally, the complexity of this evaluation grows proportionally with
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Figure 7: Performance Difference for β = 0.6 Sweeping Across α. Comparing ∆ CR and
∆AUROC for various α values. In this case see a more limited benefit of the
“RBC models” over “BCE models”, with α ∈ [0.3, 0.6] showing significant benefit
in CR and no significant degradation in AUROC.

the number of models and thresholds being considered. Thus, if there are many potential
thresholds, it may be more effective to use CR directly.

Although we know the absolute scale of rank-based compatibility with 0 denoting “no
compatibility” and 1 denoting “perfect compatibility”, we do not have a sense of what the
numbers in between mean and how they compare across model updates. Ideally, we would
like to have a sense of what is an excellent rank-based compatibility value, like we do with
the AUROC measure (e.g., AUROC(f) > 0.85). This will likely come with further study
of models being updated across different tasks. One advantage CR does present is that its
improvements can be directly compared against improvements in AUROC by examining
the POP variables.

While we discussed the different use cases for CR vs. CBT, we did not explore users’
preferences. Although there may be update tasks for which the CR measure is better suited,
we have not yet characterized the relationship between rank-based compatibility and user
mental models. For example, a sepsis detection system that flags patients as at risk (Henry
et al., 2022) or sends an alert notification (Wong et al., 2021) may be a good candidate
for the CBT compatibility measure. Users in these cases would expect consistent correct
classification of patients when the underlying model is updated. If users interact with the
model to help risk stratify their patients, then the CR measure may be a better choice.
Tools used for cardiovascular event risk stratification (Lip et al., 2010) and in-hospital
deterioration risk stratification (Epic Systems Corporation, 2020; Kamran et al., 2022) may
be more effectively updated using CR.

14
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Like backwards trust compatibility, rank-based compatibility captures the “global” user
perspective. Modifying rank-based compatibility to focus on individual user perspectives
may lead to better compatibility and parity with user expectations (Martinez et al., 2020,
2021). We have focused our study of rank-based compatibility exclusively on when the
updated model continues the correct behaviors established by the original model. Previous
user studies have shown that user mental models are influenced by the error behavior of
classification models (Bansal et al., 2019a). This may hold for risk stratification models,
motivating the study of incorrect ranking in conjunction with rank-based compatibility. We
believe there is much work to do with this measure in terms of human user studies.

Finally, the primary analysis we present is based on the experimental setup developed
by Bansal et al. (2019b). Although this was intentionally done to enable the comparison
of the CBT and CR it is not an exhaustive evaluation. Notably, future work may benefit
from the exploration of different tasks, datasets, and model architectures. Some tasks like
survival analysis (Ötles. et al., 2022) may be able to use the general form of CR, Equation 6.
Different model architectures may need adaption of the joint optimization of performance
and compatibility proposed by this work. Additionally, there are real world complexities
that are unaccounted for in this analysis, such as outcome censoring due to clinician in-
terventions based on model predictions (Adam et al., 2020) and the impact of deployment
infrastructure changing as models are updated (Ötles. et al., 2021).

These limitations notwithstanding, the new rank-based compatibility measure and in-
compatibility loss present a novel way to think about model maintenance and updating
models, beyond simply optimizing for AUROC. Furthermore, optimizing the rank concor-
dance between the output of two models, rather than thresholded predictions, may be more
robust to calibration shifts, a commonly observed phenomenon in healthcare (Hickey et al.,
2013; Davis et al., 2017; Minne et al., 2012). We expect this new measure applies in eval-
uating healthcare risk stratification models. However, there are likely settings in domains
beyond healthcare that would similarly benefit from such rank-based measures. Overall,
this work enables the evaluation and development of model updates that have the potential
to lead to better clinician-model team performance.
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Appendix A. Background

A.1. Decision Threshold Dependence of CBT

Like accuracy, CBT is highly dependent on model thresholds. We illustrate this in Figure
2, which shows the dependence of CBT on the updated model decision threshold (τu).
Depending on the choice of τu CBT(fo, fu) may be 1

2 ,
3
4 , or 1. Because every patient-pair is

correctly ordered by both models in this example, the CR equals 1. If τ o had been set to a
much larger (or smaller) value, then it would have been possible for CBT values of 0 to occur
for this example. Ultimately, poorly chosen decision thresholds or models miscalibrated with
one another may demonstrate poor CBT even if both the original and updated models have
good discrimination and concordance in their correct patient-pair rankings (CR).

Appendix B. Methods

B.1. General Form Rank-Based Compatibility

Equation 3 defines rank-based compatibility for risk stratification models operating over
binary labels. Rank-based compatibility is not limited to use only in situations where the
outcomes are binary. The core concept can be applied to any set of patient labels that
can be ordered (e.g., integer or real values). We now present a general form rank-based
compatibility equation that can be employed in these situations.

CR(fo, fu) :=

∑
i∈I

∑
j∈I
1(p̂oi < p̂oj) · 1(p̂ui < p̂uj ) · 1(yi < yj)∑
i∈I

∑
j∈I
1(p̂oi < p̂oj) · 1(yi < yj)

(6)

This equation has several minor changes from Equation 3. Differences in the sum-
mation indices enable the equation to evaluate every patient-pair and an additional term
(1(p̂oi < p̂oj)) in the numerator and denominator checks if this patient-pair is ordered cor-
rectly by the label.

B.2. POP Variable Bounds

Given the assumption that the updated model is at least as good as the original model and
that both models are better than random (i.e., 0.5 ≤ AUROC(fo) ≤ AUROC(fu)) and
the relationships established in Table 1, several constraints exist on the POP variables.
These are:

AUROC(fo) + AUROC(fu)− 1 ≤ ϕ++ ≤ AUROC(fo)

0 ≤ ϕ+− ≤ 1−AUROC(fu)

0 ≤ ϕ−+ ≤ 1−AUROC(fo)

0 ≤ ϕ−− ≤ 1−AUROC(fu)

In this study, we focus only on the POP variable that represents both models ranking
patient-pairs correctly, ϕ++, as it is the only one used directly in CR. So we briefly discuss
how we derive its bounds. The minimum value ϕ++ can take is the smallest proportion of
correctly ordered patient-pairs by both models. Since the AUROCs of both models must
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be at least 0.5, the smallest this proportion is when there is minimal overlap in the set
of correctly ordered patient-pairs for each model. This is the sum of the two AUROCs
subtracted by 1. The maximal value for ϕ++ is determined by the smaller of the two
model’s AUROC which is AUROC(fo).

B.3. Lower-bound of CR

We produce a plot for the lower bound of the rank-based compatibility measure (Figure
8). For the regime of model updating that we are interested in 0.5 < AUROC(fo) ≤
AUROC(fu) ≤ 1), only the lower bound of CR varies, increasing as the discriminative
performance of the two models grows.

Figure 8: Lower bound of CR with respect to the AUROC of the original and updated
models. The lower bound increases as both models’ performance increases. The
boxed region with dotted lines demarcates a typical discriminative performance
region. In this region we would expect to observe CRs no smaller than 0.5.

B.4. Central Tendency of CR

Though the bounds suggest that higher compatibility is partially correlated with higher
discriminative performance, we expect that in practice updated models CR values will have
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a central tendency. We present a brief analytical sketch to explore this behavior. Note, we
do not seek to create a distribution for the CR generally; instead, we seek to build intuition
for how CR may vary with both models’ AUROC. This analytical approach is based on
a combinatorial argument. We analyze the number of ways a given CR can occur given
AUROCs for the original and updated models. This analysis is based on how each model
ranks each patient-pair. A patient-pair’s ranking for a given model is whether that model
correctly ranks (e.g., p̂i < p̂j for the updated model) or incorrectly ranks that patient pair.

We can use the ranking of all patient-pairs to represent the behavior of original and up-
dated models. All patient-pairs are distributed between two sets: correctly and incorrectly
ranked. Suppose we constrain the distribution of patient-pairs between these two sets to
align with the discriminative performance of the model being represented. In that case,
we can then get a sense of the number of patient-pairs that both models rank correctly.
This number is m++ and can be directly used to calculate the CR as per Equation 3. As
mentioned in Appendix Section B.3, m++ may range between mo++mu+−m and mo+,
corresponding to the bounds CR introduced in Equation 3.1. Assuming models do not
have any restrictions on how patient-pairs may be ranked, we count the number of ways that
each value of m++ = k can be achieved given that each model meets a specific AUROC.
We refer to this count as ν, where ν = |{m++ = k|mo+,mu+}|.

ν is the numerator of the hypergeometric distribution with parameters related to the
number of patient-pairs correctly ranked by the original and updated models. The number
of patient-pairs that both models ranked correctly, m++ = k, is defined in relation to the
number of total patient-pairs, m, the number of patient-pairs we are interested in selecting,
mo+, and the number of selections, mu+. The number of combinations that produce a given
m++ = k is as follows:

ν =

(
mo+

k

)(
m−mo+

mu+ − k

)
The location and shape of this function provide us with a sense of the behavior conditional
on the two model’s AUROC. In Appendix Section B.5 we plot this function and show
where we would expect its maxima to occur. From this analysis, we expect CR to be cen-
tered around the AUROC of the updated model and should have a strong central tendency
behavior.

While we do not believe this specific center to hold for all data generating processes
and model updating procedures, we hypothesize that the central tendency of CR does. In
Section 4.2, we investigate the central tendency of CR for original and updated models
trained using real data. The above analysis is still illuminating as it provides a way to
estimate the relative number of combinations between different rank-based compatibility
levels. There are many more ways for an updated model to achieve moderate rank-based
compatibility (near the value of the AUROC of the updated model) than a very high level of
compatibility (e.g., above 0.95). This suggests that achieving high rank-based compatibility
may only be possible with directed search efforts.

B.5. Maxima of Central Tendency of CR

The location of the maxima and shape of this function provides us with a sense of the
behavior of CR conditional on maintaining a fixed level of discrimination. We would expect
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this function’s maxima to coincide with the mode of the corresponding hypergeometric
distribution. For large values ofmo+,mu+, andm we expect the mode of the hypergeometric
distribution to be approximately equal to its mean. Equation B.4 has its maxima at
m++ = k∗, where k∗ is the value that provides the largest number of combinations.3This is:

k∗ =

⌊
(mo+ + 1)(mu+ + 1)

m+ 2

⌋

≈ mo+mu+

m
for large mo+, mu+, and m.

We can then plot Equation B.4 to investigate the behavior of CR given AUROC(fo)
and AUROC(fu). Figure 9 shows the number of combinations for each CR value given
original-updated model pairs. Each model pair had the same original model performance
(AUROC(fo) = 0.65), and the updated performance ranged between (AUROC(fu) ∈
[0.65, 0.95]). Examination of these curves reveals several findings. First, the k∗ for each
model pair aligns with the AUROC of the updated model. Second, these curves exhibit a
strong central tendency as the number of combinations decreases exponentially (note the
logarithmic vertical axis) as m++ = k diverges from k∗.

3. This maxima is expressed in terms of m++, which can be converted to be in terms of CR by dividing by

mo+. This maxima occurs at mo+

mo+
mu+

m
= mu+

m
= AUROC(fu).
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Figure 9: Number of combinations that yield a given CR value for an original-updated
model pair. All model pairs have AUROC(fo) = 0.65 and AUROC ∈ [0.65, 0.95]
(m = 400). The updated model’s AUROC is plotted as a vertical dotted line.
The m++ = k∗ value that achieves the largest number of combinations is plotted
as a dot on the curves. This point aligns with AUROC(fo). These curves exhibit
a strong central tendency as the number of combinations decreases increasingly
(note the logarithmic vertical axis) as m++ = k diverges from the k∗.

Appendix C. Experiments & Results

C.1. Computing Environment

This analysis was conducted using Python on a server running Ubuntu 16.04.07 with 112
x86 CPU cores and 503GB of RAM. Experiments and analyses were run using Python
version 3.7.4.

C.2. Example Replication Results

In Figure 10 we show the CR and AUROC values calculated on the held-out evaluation
data for all of the engineered models and a subset of the selection models. This subset
represents the selection models along the pareto frontier of the trade-off between CR and
AUROC (calculated using the updated model validation data). We also depict how ∆ CR

and ∆AUROC would be calculated between the engineered model where α = 0.6 and the
selected candidate update with the best AUROC.

For this example, we note that the circled engineered model induces a positive ∆ CR,
which denotes an increase in CR, and a negative ∆AUROC, which represents a reduction
in AUROC. Although the ∆AUROC is negative, this does not mean that this updated
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Figure 10: Example of Engineered Model vs. Selection Model Results. The AUROC and CR

calculated on held-out evaluation dataset are reported for the engineered models
and a subset of the selection models. In this example, we note that the circled
engineered model (α = 0.5) induces a positive ∆ CR, which denotes an increase
in CR, and a negative ∆AUROC which indicates a reduction in AUROC.

model performs worse than the original model, which has an AUROC = 0.805. Instead,
the engineered update (AUROC = 0.848) does not perform as well as the best-performing
selection model (AUROC = 0.855).
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C.3. Improvement in CR Compared with Distribution From Standard Model
Updating

We show that “RBC Models” can produce CR values greater than what is observed through
standard model updating procedures with little cost in terms of AUROC. See Figure 11.

Figure 11: Improvement in CR of “RBC Models” at α = 0.5. We note how for nearly
all of the replications the “RBC Model” produces CR values exceeding those
produced by the “BCE Models”. The AUROC values are relatively in line with
one another.

C.4. ϕ++ Central Tendency

As mentioned above, the distributions of CR shown in Figure 9 shift in relation to the
AUROCs of the models. To control for this shift we examined the POP variable ϕ++. We
did this by calculating the ϕ++ for each updated model. We then created a histogram
for all updated models (histogram bin size=0.01). This procedure was repeated for all 40
replications. We then averaged the bin counts over all the replications. These results are
plotted in Figure 12

From this plot, we see that each replication has a strongly peaked histogram and that
the mean distribution of ϕ++ has a robust central tendency.

C.5. Improvement of ∆ CR and Non-Degradation of ∆AUROC

The graphs presented in Section 4.3 show the mean ∆ CR and ∆AUROC. However, we
examined the 95% confidence intervals to assess statistically significant differences. We
determined if there was a statistically significant improvement in ∆ CR (i.e., the confidence
interval does not include 0) and if there was not a statistically significant degradation in
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Figure 12: Central Tendency of ϕ++. ϕ++ for each replication plotted in gray, bin size=0.01.
Note a small amount of uniform jitter was added during plotting. The mean of
these histograms across all replications is plotted in blue.

∆AUROC (i.e., the confidence interval does include 0). The α-β combinations that met
these criteria are in blue in Figure 13. We note that 57 out of the 121 α-β combinations
show an improvement with the inclusion of the LR loss.

In order to characterize the α-β combinations where we see this improvement, we plot
the critical confidence interval values (the lower bound of ∆ CR and the upper bound of
∆AUROC) along with their product in Figure 14.

From Figure 14, we can see there are several “regions” of α-β combinations. When
α is high (i.e., α ≥ 0.7), then we observe that we may not have a statistically significant
improvement in ∆AUROC (the red region on top of the left panel). This makes sense. As α
increases, we de-emphasize the importance of CR, and thus, there should be little difference
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Figure 13: α-β Combinations Showing Improvement. All α-β combinations with a statisti-
cally significant improvement in CR without a statistically significant degrada-
tion in AUROC are depicted in blue.

(in terms of CR) between the “RBC” and “BCE models”. We note that when α is low, and
β is high (i.e., α ≤ 0.4 and β ≥ 0.6) that we may have a statistically significant degradation
in ∆AUROC. Again, this makes sense, as this α-β combination represents training “RBC
models” to focus on CR but then attempting to select models based on AUROC. This
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Figure 14: Details of α-β Combinations Showing Improvement. In the left panel, we show
the 95% confidence interval lower bound for ∆ CR. The blue areas represent α-β
combinations that yield a statistically significant improvement (i.e., ∆ CR > 0).
In the middle panel, we show the 95% confidence interval upper bound for
∆AUROC. The blue areas represent combinations without statistically signifi-
cant degradation (i.e., ∆AUROC ≥ 0). In the right panel, we show the product
of the two previous panels to show how we arrived at the above results.

training-selection discrepancy would disadvantage the “RBC models” in terms of AUROC.
Thus, when we overlay these areas of interest, we see that we generally tend to observe
statistically significant improvements in ∆ CR that come without an AUROC cost in the
region of low α and low β (i.e., α ≤ 0.6 and β ≤ 0.5). Notably, this region aligns with model
developers seeking to emphasize compatibility as a part of their updated model development
process.

C.6. CBT Across Thresholds

As discussed in Section 2.2, CBT depends on setting a decision threshold for each model
in the model-pair. To help contextualize how various thresholds impact CBT we conduct an
additional analysis of the main experiment discussed in Section 4.3. In this experiment,
we sweep the thresholds for the original model, τ o, and the updated model, τu, and find
the maximum achievable CBT over all of the “BCE models”. This analysis can be used to
observe CBT across multiple thresholds, as per Wynants et al. (2019).

For each replication, we swept both τ o and τu and selected the updated “BCE model”
that maximized the validation CBT. We then computed the CBT on the held-out evaluation
dataset for the selected updated “BCE model” given the two threshold values and the
original model. In Figure 15, we show the accuracy of each model, and in Figure 16, we
show the mean evaluation CBT for each τ o-τu pair.

We note that many of τ o-τu pairs corresponding to model-pairs with good accuracy
(i.e., τ o, τu ≥ 0.1) yield good maximum achievable CBT values (CBT(fo, fu) > 0.9). An
area of interest is where τ o is very low (between 0 and 0.1) and where τ o is low, and τu

is very low (0.1 ≤ τ o ≤ 0.2 and 0 ≤ τu ≤ 0.1). We show fine-grained results for this area
in Figure 17. In this detailed view, we see that poor CBT values (CBT(fo, fu) < 0.5) are
achieved under two conditions. The first is when τ o = 0 and τu ≥ 0.35. In this case, the
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Figure 15: Held-out Evaluation Accuracy for τ o-τu Pairs. Original models display good
accuracy (Accuracy(fo) > 0.7) when τ o > 0.1. Updated models display good
accuracy when τu > 0.1.

CBT value decreases as τu increases. The second is when τ o ≥ 0 and τu ≤ 0.01. In this
case, lower τu values correspond with lower CBT values.

These extreme case threshold values cause the models to tip their classification balances
against one another, e.g., the original model and decision threshold may label everyone as 0,
and the updated model and threshold label everyone as 1. We note that the regions of large
variation in CBT only occurs in areas where one of the models has bad accuracy and are
an empirical observation of the illustrative example depicted in Appendix Section A.1.
Additionally, the values in these figures cannot be directly compared to the CR. However,
they underscore the dependence of CBT on decision thresholds.
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Figure 16: Mean Maximum Achievable Held-out Evaluation CBT for τ o-τu Pairs. The ma-
jority of model-pairs yield good maximum achievable CBT values. The boxed
area denotes an area of poor performance, depicted in detail in Figure 17.
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Figure 17: Detailed View of Mean Maximum Achievable Held-out Evaluation CBT for τ o-τu

Model-Pairs.
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