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ABSTRACT

Objective: Occupational injuries (OIs) cause an immense burden on the US population. Prediction models help

focus resources on those at greatest risk of a delayed return to work (RTW). RTW depends on factors that de-

velop over time; however, existing methods only utilize information collected at the time of injury. We investi-

gate the performance benefits of dynamically estimating RTW, using longitudinal observations of diagnoses

and treatments collected beyond the time of initial injury.

Materials and Methods: We characterize the difference in predictive performance between an approach that

uses information collected at the time of initial injury (baseline model) and a proposed approach that uses longi-

tudinal information collected over the course of the patient’s recovery period (proposed model). To control the

comparison, both models use the same deep learning architecture and differ only in the information used. We

utilize a large longitudinal observation dataset of OI claims and compare the performance of the two

approaches in terms of daily prediction of future work state (working vs not working). The performance of

these two approaches was assessed in terms of the area under the receiver operator characteristic curve

(AUROC) and expected calibration error (ECE).

Results: After subsampling and applying inclusion criteria, our final dataset covered 294 103 OIs, which were

split evenly between train, development, and test datasets (1/3, 1/3, 1/3). In terms of discriminative performance

on the test dataset, the proposed model had an AUROC of 0.728 (90% confidence interval: 0.723, 0.734) versus

the baseline’s 0.591 (0.585, 0.598). The proposed model had an ECE of 0.004 (0.003, 0.005) versus the baseline’s

0.016 (0.009, 0.018).

Conclusion: The longitudinal approach outperforms current practice and shows potential for leveraging obser-

vational data to dynamically update predictions of RTW in the setting of OI. This approach may enable physi-

cians and workers’ compensation programs to manage large populations of injured workers more effectively.
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OBJECTIVE

Occupational injuries (OIs) cause an immense burden on the US

population and economy. Millions of workers are injured annually,

leading to pain, emotional suffering, and economic. In addition to

resulting in time away from work, OIs increase medical expendi-

tures and shorten lifespans; furthermore, they disproportionately af-

fect minorities.1–8 OIs have far-reaching economic consequences

due to decreases in corporate productivity and major costs to gov-

ernment organizations.1–3 As in other facets of medicine, timely and

clinically appropriate intervention is critical to promote injured

worker healing and recovery.9–11 In occupational medicine, the pri-

mary clinical outcome is return to work (RTW).

The RTW process, like most medical episodes, is complex.12 It

requires individual medical management by highly trained physi-

cians; additionally, injuries are often reviewed for treatment utiliza-

tion by reviewers, or recovery managers, who oversee thousands of

simultaneous cases on behalf of workers’ compensation programs.13

The current state of the art for injury recovery prediction are models

and guidelines that are used at the onset of the injury.14–16 These

models are often used by payers to estimate a worker’s RTW date.

Predicted RTW duration is both a clinical and administrative tool

that has been ingrained into the occupational health framework.17

The most prevalent modeling techniques used for this approach are

Cox proportional hazards models, which are used to estimate the

likelihood that workers will RTW in a given time period.18–21 These

models estimate RTW based on information at the time of a work-

er’s injury, thus, providing guidance on the expected resources

needed for a worker’s recovery, and enabling stratification of the

currently injured worker population. While these models assist ini-

tial triage of resources for injured workers, their utility decreases

over time as they fail to account for diagnoses and treatments work-

ers experience over the course of their recovery. To the best of our

knowledge, longitudinal data available in the form of insurance

claims streams are not currently used to generate or update RTW

predictions.

To support decision-making over the course of worker recovery,

we investigate the predictive performance benefits of using longitu-

dinal observations collected over the course of a workers compensa-

tion case. The use of longitudinal observations has been shown to

improve performance in the prediction of cardiovascular events.22

However, to the best of our knowledge, this has not been character-

ized for the prediction of RTW. In this work, we measure the differ-

ence in predictive performance between the current approach to

RTW prediction (baseline model), which only uses information col-

lected near the time of injury, to an approach that uses longitudinal

observations (proposed model) collected over the course of a work-

er’s recovery.

To do this, we present a new framework to dynamically predict

the RTW of injured workers. The proposed model reframes the pre-

diction of RTW into a dynamic prediction task. For injured workers,

it seeks to learn the relationship between observations collected

daily and the worker’s future work status, that is, whether the

worker has returned to work or not. To evaluate whether longitudi-

nal observation data collected beyond the first week of injury can

help predict work status, we estimated a deep learning model capa-

ble of ignoring missing longitudinal observation data. We trained

this proposed model with the entire history of longitudinal observa-

tions available in the training dataset. Given daily longitudinal

observations, the model will return future work status predictions.

Although the predictions are dynamic, the underlying model param-

eters are static.

We compare the performance of this proposed model against the

baseline model, which is representative of current RTW prediction

approaches used in practice as it is limited to data collected around

the time of injury.16 The baseline model only utilizes information col-

lected around the time of a patient’s initial injury (the first week). To

assess the benefit of the proposed approach, we use a large claims

dataset from the state of Ohio’s workers’ compensation program to

develop the models. Both models are implemented as recurrent neu-

ral networks, a type of deep learning model, to learn this relation-

ship.23–26 We evaluate the predictive performance difference

between these two approaches using a held-aside portion of the

claims dataset, based on the daily predictions they each produce of

future work status. The main contributions from this work are as fol-

lows:

1. An evaluation of the predictive performance impact of the use of

longitudinal observations on the RTW prediction task

2. Introduction of the RTW prediction problem as an important

area of research that should be addressed by the informatics

community

3. A reformulation of the OI recovery problem as a dynamic work

status prediction problem

4. Recurrent neural network implementation and training proce-

dure used for both the proposed and baseline models

5. A Python framework to automatically build dynamic health-sta-

tus prediction models from longitudinal datasets from electronic

health records or claims-like systems.

BACKGROUND AND SIGNIFICANCE

The prediction of RTW for an OI is fundamental to decision-

making by employers, occupational health physicians, and recovery

managers—all of whom share the common goal of minimizing the

employee’s absence. Disability management is a human resources

process conducted by many employers who recognize it as a key

component of overall workplace productivity.27–29 On an individual

basis, if the predicted RTW duration is short, then minimal person-

nel shifting need occur. On the other hand, with a longer predicted

RTW duration, employers face more operational decisions, includ-

ing whether to hire temporary workers and/or to offer the injured

employee modified duty during the recovery.30 On an aggregate ba-

sis, actual RTW durations are compared aginst predictions forming

an important benchmark for many businesses.31 Questions that an

employer may seek to use a RTW model for are: Will the employer

need to replace the worker on a temporary or permanent basis? Is

modified duty a worthwhile option for this worker? Is the organiza-

tion measuring up to RTW benchmarks?

RTW predictions are related to the expert prognoses generated

by occupational health physicians, who are often asked or required

to supply absence notes for injured patients.17,32 Importantly, RTW

patients are often seen by generalist primary care physicians or non-

occupational health specialists.33 As such, RTW predictions are

used as a part of treatment guidelines for nonspecialist physicians to

benchmark OIs.34 A question that a physician may seek to answer

using a RTW model is: How long is this patient’s absence from

work expected to be?
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Recovery managers, typically working on behalf of insurance

organizations, are often assigned to cases based on the RTW predic-

tion. Cases with longer predicted RTW durations are usually classified

as severe or difficult cases. These cases are often directed to experienced

recovery managers. In any scenario, the RTW prediction is used to

manage expectations and to dictate operational processes across clini-

cal and corporate stakeholders. A recovery manager may use an RTW

model to answer: How should this case be triaged? Should I alert other

stakeholders that the RTW duration has exceeded the prediction?

Due to the close relationship between RTW prediction and treat-

ment, predictive models are bundled with guidelines for treatment

and resource management.35,36 Despite this relationship we focus our

work on the task of RTW prediction and leave additional guidance to

future work. From the existing RTW literature, it is important to note

that state of the art in OI modeling has several potential avenues for

further exploration. The first is that models are generally based on a

static time-to-event prediction of RTW, designed for usage only at the

time of injury, and incapable of handling newly observed informa-

tion.18–21 The second is that models are traditionally made for specific

diseases with custom collected data.18,20,21,37–40 The existing work

presents a gap to be explored. Specifically, what is the value of pro-

ducing RTW predictions using longitudinal observations?

To address this question, we reformulate OI modeling as a dy-

namic prediction task, where the prediction of a worker’s RTW is

made sequentially over the time horizon of their injury. These re-

peated predictions would be based on observational data commonly

available to decision-makers, like physicians and workers’ compen-

sation programs. For example, each day, new claims observations

may be fed to a model, which returns the likelihood that the injured

worker will be back to work in a week. This is a type of sequence-

to-sequence learning task, where a model captures the mapping be-

tween a given sequence of observations and a sequence of predic-

tions. Markov chain-based models have successfully been used for

sequence-to-sequence learning tasks.41–44 However, we would like

the model to learn to use the longitudinal observations directly (eg,

no grouping or curation of diagnoses or treatments) and we would

like the proposed model to build a representation of the accumu-

lated observations (or history). Recurrent neural networks (RNNs),

a type of deep neural network, are naturally well suited for this task.

This is due to their ability to handle sequences with long-range time

dependencies23–26 and capability to learn representations for high-

cardinality categories (eg, diagnoses and treatment codes) with mini-

mal modification.45–49 Thus, we use RNNs for this study to estab-

lish the predictive difference between the two approaches.

MATERIALS AND METHODS

We assess the value of utilizing longitudinal observations by refram-

ing RTW prediction as a dynamic task and comparing this to a base-

line model that only uses information collected around the time of

injury. Our proposed model reframes the RTW prediction problem

to produce future work status predictions using observations of di-

agnoses and treatments collected over time. In the following subsec-

tions, we describe the dataset used to train this model, formalize the

sequence-to-sequence prediction task, and then discuss the experi-

mental setup.

Dataset
We utilized the Peers Health Ohio Workers’ Compensation Dataset

for this work. This dataset contains longitudinal workers’ compen-

sation claims information for over 1.2 million workplace injuries

collected in the state of Ohio from January 2001 to October 2010.

For each injury record, there is demographic information describing

the age, sex, and job type of the worker at the time of their injury.

This demographic information is accompanied by time-stamped lon-

gitudinal information that describes the diagnoses and treatments

(treatments are procedures or activities rendered by healthcare pro-

viders to improve the health of a patient, like physical rehabilitation)

that the worker experienced throughout their injury recovery. Fi-

nally, for each injury record, the dates of a worker’s departure from

and return to work are recorded (an injury record may contain mul-

tiple depart from and return to work dates). This work was con-

ducted with approval from the University of Michigan Institutional

Review Board. The data underlying this study were provided by

Peers Health by permission. Data will be shared on request to the

corresponding author with permission of Peers Health.

Based on preliminary experiments, we sample 300 000 injuries to

achieve a suitable trade-off between model training time and predic-

tive performance. We then exclude all injuries with case durations of

less than 7 days, as a predictive model would provide marginal utility

for these cases. Finally, we split the dataset evenly between training,

development, and test datasets (1/3, 1/3, 1/3, respectively). The devel-

opment dataset was used for hyperparameter search. After the model

hyperparameters were found, final model training was conducted us-

ing a dataset that consisted of the combined training and development

datasets. The held-aside test dataset was used to evaluate the perfor-

mance of our proposed model against the baseline model.

Problem statement
We seek to learn a model, f ð�Þ, that when given a sequence of diag-

noses and treatments observations, xi;t, over time, t, for a given

worker injury, i, produces an estimate of the likelihood of return to

work within a defined period, Prðyi;t ¼ 1Þ.

Approach
In the following 2 sub-subsections, we provide an overview of the

variable definitions and then follow with a discussion of the mathe-

matical model implemented using RNNs.

The set of worker injuries are denoted by I which is indexed by

i 2 I. Time was discretized using a fixed time-step duration set to 1

day for this study and t ¼ 1; 2; . . . ;365. We limited case durations

to the typical cut-off for maximal medical improvement

(365 days).50 This discretization and transformation are further

described in the Supplementary Material S2 and S3. Moreover,

Figure 1 depicts an example of an injury transformation.

Each injury, i, had two types of data collected. The first type is

characteristics, which includes all time-invariant demographic data

(eg, biological sex and job classification). The second type is obser-

vations, which includes time-stamped longitudinal information that

was collected over time (eg, procedure information). For every in-

jury, i, we create a characteristic vector ci of equivalent size (dc), to

represent time-invariant information that was collected before or at

the time of injury. We create an observation vector oi;t of size do for

every injury, i, at every time-step, t; these vectors represent informa-

tion collected each day of an injured worker’s recovery. Characteris-

tic and observation vectors both contain information encoded as

either real numbers and or as integers (for categorical data). Missing

observations were denoted with a special missing value (see Supple-

mentary Material S2 for more detail). We let oW
i;t denote the work
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status of an injured worker over time where oW
i;t ¼ 1 denotes

“working” status and oW
i;t ¼ 0 denotes “not working” status.

Characteristic and observation vectors are used to generate the

input features and output labels of the model. Model input features,

xi;t, denote the vector of injured worker’s characteristics and obser-

vations over all time-steps, xi;t ¼ ci; oi;t

� �
8 i 2 I; t 2 T. An ex-

ample calculation of xi;t is depicted and explained in Figure 1. The

model output label, the future work status, denoted as yi;t is also

indexed in terms of injuries and time-steps. Each yi;t is related to the

observed work status. We define yi;t ¼ oW
i;tþ/, where / is termed the

offset, a positive integer value for the number of time-steps in the fu-

ture we would like to predict work status.

Model definition
At every time-step, the model maps all observed input features about

an injury i up until time t to estimate the probability of being in the

future work status of working, Prðyi;t ¼ 1Þ. We denote the overall

model as f �ð Þ and the model’s parameters as h, formally

f : xi;1; . . . ; xi;t

� �
! Pr yi;t ¼ 1

� �
. The model is composed of 3 func-

tions, the input encoder fin �ð Þ, the history encoder fmid �ð Þ, and the

output estimator fout �ð Þ. Each function is described in more detail be-

low. The parameters of the overall model, f �ð Þ, h is the combination

of the parameters of these functions hein
, hemid

, and hout.

The model does not directly use xi;t to predict yi;t; instead, it

uses two intermediary lower-dimensional approximations: the

encoded observation vector ~x i;t and the encoded history vector ~hi;t.

The encoded feature vector ~xi;t is a transformation of xi;t that repla-

ces the categorical integer values with real-valued embeddings.46,48

We compute ~x i;t using fin xi;t

� �
which transforms xi;t using hein

parameters into ~xi;t, fin : xi;t ! ~xi;t. Thus, ~x i;t is a real valued vector

with dimension d~x .

Similarly, the encoded history vector ~h i;t approximates the full

history of the injury’s observations, xi;1; . . . ; xi;t

� �
. The encoded

history vector ~h i;t is a real-valued vector of size d~h
that is updated

by the middle function, fmid �ð Þ, a recursive function that takes the

current timestep’s encoded input (~x i;t) along with the encoded his-

tory from the previous time-step (~hi ;t�1) and returns an updated

encoded history for the current time-step (~h i ;t). It uses hemid
parame-

ters and is formally denoted as fmid : ~xi;t; ~hi;t�1

� �
! ~hi;t.

Since the encoded history vector ~h i;t is a representation of the

injury’s entire history up to and including the current time-step t it

can be used to estimate the output label yi;t. This mapping is con-

trolled by the out function fout �ð Þ which takes ~h i;t and returns a prob-

ability estimate of the output label (work status) being equal to 1.

The out function fout �ð Þ is parameterized by hout and formally,

fout : ~h i;t ! 0;1½ �. This probability estimate can then be used to esti-

mate the outcome based on a threshold, s; as follows:

byi;t ¼
1 if Pr yi;t ¼ 1

� �
� s

0 otherwise

(

In summary, the sequence of functions transforming the inputs,

xi;t; to the probability estimate, Pr yi;t ¼ 1
� �

, is:

~xi;t ¼ fin xi;t

� �
~hi ;t ¼ fmid ~xi;t; ~h i;t�1

� �
Pr yi;t ¼ 1
� �

¼ fout
~hi;t

� �
This recurrent approach yields a model that maps to clinical

decision-making. Note, although the model updates the history

encoding in response to observations collected across time, the un-

derlying parameters of the model remain static across time-steps.

Figure 1. Example worker timeline and corresponding characteristic and observation data. In this example, worker injury 1, is a 55-year-old male postal worker is

injured on January 5. This information is encoded in the real characteristic vector, cR
1 ¼ 55ð Þ, which contains the age information, and the categorical characteris-

tic vector, cC
1 ¼ 1; 78ð Þ, which encodes biological sex (male ¼ 1) and job code (postal worker ¼ 78). His injury case runs until the last observed date, January 10.

Throughout the course of injury, diagnoses and procedures are observed. This information is encoded in daily observation vectors. On the first day of the work-

er’s injury, January 5, the real observation vector, oR
1;1 ¼ 1; 0ð Þ, contains information regarding the number of diagnoses and procedures observed for the injured

worker at t ¼ 1 (1 diagnosis and 0 procedures). The categorical observation vector oC
1;1 ¼ 10; 0ð Þ, encodes diagnosis (ankle sprain ¼ 10) and the no procedures ob-

served token (0). The input vector at t ¼ 1, x1;1 is the concatenation of the observation vectors at that time and the characteristic vectors 55; 1; 78; 1; 0; 10; 0ð Þ.
The model will then map the input vector to the output, y1;1 which is the work status 1 day in the future (/ ¼ 1 for this example).

1934 Journal of the American Medical Informatics Association, 2022, Vol. 29, No. 11

D
ow

nloaded from
 https://academ

ic.oup.com
/jam

ia/article/29/11/1931/6678249 by U
niversity of M

ichigan user on 06 April 2023



A block diagram of the model is depicted in Figure 2, with all future

work statuses being a function of the current observation and all his-

torical observations.

Experimental setup
The overall model processes information through a series of submo-

dels that each consist of one or more neural network layers, allow-

ing the entire model to be trained via back-propagation.24 Training

was conducted using stochastic gradient descent, with a batch size

of 64 injuries, and using the Adam optimizer.

The size of the submodels and the activation functions for all

their layers (except the last one of the out-submodel) are model

hyperparameters. Thus, they were selected as a part of the hyper-

parameter search process. We used hyperband search, training on

the training dataset and selecting hyperparameters which yielded the

best performance in terms of area under the receiver-operating char-

acteristic curve (ROC) on the development dataset.51 Additional

hyperparameters included the width and depth of each of the sub-

models, drop-out rate applied to the inputs and between layers,

learning rate, and layer activation functions. For full details on the

possible values for each hyperparameter, please see the

“Hyperparameters” of the Supplementary Material S2.

Baseline model

Industry standards for predicting RTW are based on regression

models that predict the case durations given static patient covariates,

including age, gender, job class, and comorbidities, together with di-

agnosis information available at the beginning of the case. ODG and

MDGuidelines have deployed these models in their web-based sub-

scription service for treatment guidance and resource manage-

ment.35,36 The model used by ODG is developed with the same

dataset we use for this study. However, these models are proprietary

and not available without purchase.34 As such, we sought to create a

baseline regression model that is analogous to the industry standard

proprietary models.16 We did this by limiting the data presented to

the model while retaining the daily prediction capability of the pro-

posed approach. The baseline model uses patient covariates and

observations collected during the first 7 days of the initial patient in-

jury. After the seventh day, the baseline model was then fed with

“missing observations” for the observation component of its inputs.

Specifically, oi;t ¼ “missing observations” 8 i 2 I; t 2 T > 7.

These missing observations allow both models to function over

time-steps where there might not have been longitudinal observation

data collected. Utilizing these missing observations provides valid

inputs for all time-steps, allowing the model to return predictions

across the entire case duration. For more information, see “High-

Cardinality Category Embeddings” in Supplementary Material S2.

Thus, simulating the information available to the proprietary mod-

els. Note, this data observation limitation was applied to the base-

line model at both training and testing time.

To have a controlled comparison between the baseline model

(representing existing approaches that do not use longitudinal obser-

vations) and our proposed model (representing the usage of longitu-

dinal observations), we sought to ensure that they had the same

overall capacity and used the same training procedure. As such, we

used the same framework and searched over the same hyperpara-

meters; and only limited the baseline so that it only used information

typically used for the proprietary models we sought to replicate.

This setup replicates the data used to create the Cox proportional

hazards models traditionally used for this task with an added bene-

fit; the baseline model can learn from the initial observation data

and the observation timing. By using the same architecture, search-

ing over the same hyperparameter space, and by only using the first

7 days of observations we seek to create a capable baseline that rep-

resents the best possible performance of existing proprietary models.

The restriction to the first 7 days is an optimistic interpretation of

existing proprietary models that only use information that was col-

lected at the time of injury. By comparing our proposed method

against the baseline model, we can estimate the potential improve-

ment of using longitudinal observations over the current industry

approach of using information collected around the time of injury.

Evaluation

To evaluate the performance of both models, we generated daily

predictions on the held-out test dataset of OIs. All of the daily pre-

dictions were used to calculate performance measures, we use this

window-level approach (also known as time-horizon approach)52 as

users of the model have the ability to intervene on patients every

day. Performance was measured in terms of discriminative perfor-

mance, using the ROC and the area under it (AUROC). Calibration

performance was also assessed with calibration curves53 and

expected calibration error54 (ECE). For each injury, all daily predic-

tions, Pr yi;t ¼ 1
� �

, were compared against the true label (yi;t). To as-

sess the variation in performance, we computed 90% confidence

intervals for all curves and measures. Confidence intervals were gen-

erated using bootstrap sampling; in this procedure, the population

Figure 2. Model diagram. Inputs of observations, xi;t , and the prior history encoding, ~hi ;t�1, are used as inputs at every time-step, t . Observations are encoded

with hein
in order to learn representations of high-cardinality categories (~xi;t ). Along with ~hi ;t�1 these representations are then encoded into the current history,

~hi ;t , using hemid
. Finally, hout converts the current history to a prediction of the injured worker’s likelihood of being at work in the future, Pr yi;t ¼ 1

� �
.
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of injuries in the test set was resampled-with-replacement 100 times

to estimate model performance under varying distributions of in-

jured workers.

We implemented the entire data transformation, model training,

and evaluation pipeline using python 3.6.9, using the TensorFlow

docker container (tag: latest-gpu-jupyter accessed on June 9, 2021)

running on an Ubuntu 18.04 workstation with an Intel Xeon 6146

CPU, 256 gigabytes of RAM, and a NVIDIA Titan V graphics

card.55 The proposed and baseline models were implemented using

TensorFlow and Keras.56–58 Additionally, we utilized the SQLite,

SKLearn, NumPy, pandas, and tableone python packages.59–64 We

have released our data transformation code and model training py-

thon framework on GitHub (https://github.com/eotles/Tempora-

lTransformer). The methods and approaches described above are

covered by a US utility patent application.

In addition to evaluating the proposed deep learning-based

model and the baseline model, we also evaluated several models us-

ing simpler machine learning architectures. We used L2-regularized

logistic regression and random forest regression as these architec-

tures are more directly interpretable than the proposed deep learning

approach. These additional evaluations can be found in Supplemen-

tary Material S5.

RESULTS

For our study, we set the offset to 1 week (or 7 days, thus / ¼ 7) so

that we predict work status for 1 week in the future. Note, when t

þ/ surpasses the last observed oW
i;t value, the last observed oW

i;t value

is filled forward. The choice to forward fill the future work status

may not be appropriate for all use cases; however, it is appropriate

for this RTW task. Injury cases are only considered to have reached

completion once the injured worker has reached their maximal re-

covery or has transitioned to long-term disability at the 365-day cut-

off we employ above.50 Thus, the work status observed on their last

day is likely to be their lasting work status. After applying our mini-

mum case duration of 7 days exclusion criteria to the 300 000 ran-

domly sampled OIs, we had 294 103 OI cases.

The median age of injured workers at the time of injury was

35 years old, with an interquartile range (IQR) between 26, 45 years

old. Most of the workers were male, with only 31.9% having a bio-

logical sex of female. In total, these workers represented 595 differ-

ent occupation classifications, with the 5 most common occupations

being: city employees, restaurant workers, school district employees,

nursing home workers, and automobile service workers (Supplemen-

tary Table S1). The median number of diagnoses observed per in-

jured worker was 1 (IQR: 1, 2), the number of procedures was 5 (3,

10). When limited to observing the first week of the worker’s recov-

ery, as in the case of the baseline model, the number of diagnoses ob-

served was 0 (0, 0), and the number of procedures was 4 (2, 6), see

Supplementary Material S2 for discussion of this. The most com-

monly observed diagnoses and procedures are categorized in Supple-

mentary Tables S2 and S3. Since the RTW observations were not

limited to the first week, both the baseline and our proposed model

observed the 1.1 (SD: 0.5) return-to-work events per injured worker.

These numbers are also depicted in Table 1.

When evaluated on daily predictions generated over the test

dataset, our proposed model had an AUROC of 0.728 (90% confi-

dence interval: 0.723, 0.734), compared to the baseline model’s

AUROC of 0.591 (0.585, 0.598). In terms of calibration, our pro-

posed model had an ECE of 0.004 (0.003, 0.005) versus 0.016

(0.009, 0.018) for the baseline model. The values along with ROC

curves and calibration curves are displayed in Figure 3. Despite un-

derestimation of RTW likelihood in low-likelihood cases, the pro-

posed model displays better overall calibration (smaller ECE) than

the baseline model. The baseline model shows underestimation of

RTW likelihood in both low- and high-likelihood cases but also

shows overestimation in midlikelihood cases. When examining the

performance of our proposed model and the baseline model in sub-

populations of injuries occurring in workers of different ages or

sexes, their performance varies slightly. However, our proposed

model generally outperforms the baseline model in each of these

subpopulations, Supplementary Figures S1 and S2.

The additional experiments utilizing simpler model architectures

discussed in Supplementary Material S5 reinforce the findings of the

main experiments. These simpler model architectures generally had

worse discriminative performance than the proposed deep learning-

based model. However, simpler architectures using longitudinal

observations outperformed baselines without longitudinal observa-

tions. For example, the logistic regression model using longitudinal

observations had an AUROC of 0.607 (0.606, 0.607) compared an

AUROC of 0.581 (0.580, 0.581) for the logistic regression model

without longitudinal observations (see Supplementary Figure S5 for

full details).

Additionally, when we examined the importance of longitudinal

observations, we saw that the longitudinal observation data played

a large role in the prediction of future work status. We observed

that 9 out of the top 25 features of the logistic regression model cor-

responded to longitudinal observations. These features and their

coefficients are displayed in Supplementary Table S9. Using permu-

tation importance, we also observed the importance of longitudinal

observations. Procedure Codes, a type of longitudinal observation,

constituted the second largest group of features that impacted the

discriminative performance of the logistic regression model. This is

depicted in Supplementary Figure S7.

DISCUSSION

We found that utilizing longitudinal observations improves the per-

formance of RTW prediction compared to approaches that only use

Table 1. Population characteristics

Population characteristics n: 294 103

Demographic characteristics Entire population

Age, median (IQR) 35 (26, 45)

Biological sex

n missing: 3876

F, n (%) 92 674 (31.9)

M, n (%) 197 553 (68.1)

Case duration (days), mean (SD) 88.9 (111.7)

Observation characteristics per worker Baseline Model

Number of diagnoses, median (IQR) 0 (0, 0) 1 (1, 2)

Number of procedures, median (IQR) 4 (2, 6) 5 (3, 10)

Note: Demographic information (age and biological sex) is equally used be-

tween the baseline model (baseline) and the proposed model (model). Obser-

vations such as diagnoses and procedures are not equally used by both

models, as the baseline model is limited to observations that occur within the

first week of injury. As such, these observation characteristics are counted per

worker for the baseline model and proposed model. The case duration is mea-

sured in days.
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information at the time of injury. Despite both models using the

same RNN-based deep learning architecture, the proposed model

outperformed the baseline model in both discrimination and calibra-

tion. The baseline model is analogous to the current state of the art

in RTW prediction, as it uses information collected at the time of in-

jury to generate predictions. In contrast, the proposed model uses

treatment information that is collected daily to update RTW predic-

tions. The performance differences we observed between our pro-

posed model and the baseline model show the potential practical

benefit for reframing the RTW task as a dynamic prediction task.

Our proposed approach uses standard longitudinal data that is

routinely collected by workers’ compensation programs and exploits

the capabilities of deep learning to build a dynamic model that out-

performs approaches that only use information collected around the

time of injury. Our python framework transforms readily available

injury claims data into sequences of daily observations. These obser-

vations encode time-variant information, like diagnoses and treat-

ment codes, and are combined with time-invariant data (eg, worker

demographics). The framework then trains an RNN-based deep

learning model to map these daily observations to the future work

status of an injured worker. Thus, the learned model could be used

to repeatedly generate RTW predictions given a sequence of longitu-

dinally observed diagnoses and treatments.

The updating of RTW in response to observed diagnostic and

treatment information could be valuable for employers, physicians,

and OI recovery managers. Existing RTW prediction models cou-

pled with treatment guidelines software have already been imple-

mented into EHR systems.10,11 Our proposed approach may

provide additional value as the dynamic assessment of the worker’s

future work status relates to how physicians and other clinicians as-

sess injuries over time. Like the proposed model, physicians update

their understanding of an injured worker’s recovery and future re-

covery prognoses based on information they collect over time. Addi-

tionally, this formulation helps to monitor populations effectively.

As near real-time observations are collected for individual injured

workers, the proposed model can generate RTW estimates. RTW

estimates can then be used by OI recovery managers to allocate

treatment resources to injured workers. These estimates can also be

used by people with managerial responsibility for workforce cover-

age in industry organizations. Furthermore, this model may eventu-

ally be used to help answer “what-if questions”; using the model to

assess the impact of potential treatment choices on work status

could help support clinical decision-making. Altogether, the dy-

namic prediction of work status and may assist in the management

of OIs, ultimately positively impacting injured workers and organi-

zations that support them (eg, workplaces and governmental organi-

zations).

To be useful, this dynamic model needs to be implemented

within feasible workflows. We will briefly sketch a potential imple-

mentation method that would enable predictions to be used by re-

covery managers. This implementation would utilize insurance

claims data. A hosted model fed claims data, in an automated or

manual manner, could provide predictions for recovery managers

and employers. Another potential implementation mirrors a project

implemented at Kaiser Permanente10,11 and is described in Supple-

mentary Material S4. Both potential implementations raise many

questions, ranging from privacy concerns to data infrastructure

issues.65 Of note, evaluation of OIs in terms of RTW is dependent

on desired use-case and implementation. For this initial development

study, we chose to use a daily evaluation as it is the most plausible

evaluation frequency. We present potential implementations, not as

finalized solutions, but as ideas to inform future study in this space.

A key set of issues that arise as we consider the translation of this

model from “bench to bedside” are the issues of algorithmic bias

and fairness. These must be very carefully considered and studied

before, during, and after any implementation of this work.66 As

noted in the Supplementary Figures S1 and S2 our results show that

the proposed model outperforms the baseline model for all age and

Figure 3. Predictive performance of the proposed model compared to baseline model. In the left subfigure, discriminative performance in terms of the receiver-

operating characteristic (ROC) curve of the proposed model (blue) and the baseline model (orange) are plotted. The proposed model has a significantly better dis-

criminative performance by dominating the ROC curve of the baseline model and having a larger area under the ROC curve, which is depicted in the legend. In

the right subfigure, quintiled calibration curves for the proposed model (blue) and baseline model (orange) are displayed. Despite underestimation of RTW likeli-

hood in low-likelihood cases, the proposed model displays better overall calibration (smaller expected calibration error) than the baseline model. The baseline

model shows underestimation of RTW likelihood in both low- and high-likelihood cases but also shows overestimation in midlikelihood cases.
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sex subpopulations. This is an example of some of the analysis nec-

essary, but not sufficient, to identify sources of algorithmic bias. Al-

though this assessment was not the primary focus of this work, we

present a brief discussion of some potential issues that may arise in

terms of bias and fairness of this proposed approach.

One potential issue is the nonrepresentativeness of the underly-

ing claims data employed to develop the models. For example, un-

documented workers may be underrepresented in this dataset.

Generally, these workers are less likely to have their OIs be properly

documented, treated, and assigned to workers compensation resour-

ces by employers.67 Other socio-economic factors obscured from

claims data may also exert pressure on RTW decision-making, for

example RTW duration has been shown to correlate with the size of

an injured worker’s family.68 Blindly developing and implementing

models may reinforce negative structures in society that harm vul-

nerable groups of people. As such, it would be problematic to

blindly implement the proposed model. Instead, we emphasize that

these challenges are areas for careful future study, which should

combine additional analytical work with further data collection and

study.

Although this work presents new challenges and opportunities, it

comes with several limitations. Several of these limitations pertain to

the dataset we used to create and validate our model. We utilized a

large dataset from the state of Ohio’s workers’ compensation program,

containing OIs and subsequent observations observed between 2001

and 2010. Using data from a single state limits the potential generaliz-

ability of the model to other regions, as some of the data collected is

specially tailored to Ohio (eg, procedure codes specific to the state of

Ohio’s workers’ compensation program). Additionally, other US states

or regions outside of the United States may have a different composi-

tion of occupations, injuries, and treatments. Moreover, diagnoses and

treatments may have changed since the end of the data collection. For

example, the recent shift away from opioid-based analgesics in the

treatment of pain is likely not captured by this dataset.13,69 Despite val-

idating the model on a single region, our work provides a valuable

foundation for which to replicate our study for other regions.

Another set of limitations pertain to the inaccessible baseline

models and the deep learning architecture used for this study. To

assess the improvement that the proposed approach yields, we

must compare it against a representative baseline. We trained a

baseline analogous to proprietary models by limiting the data to

the first week after injury.16 We tried to ensure parity in terms of

capacity between our proposed model and the baseline model by

using the same framework and the same hyperparameter space.

We believe this yielded a generous baseline, representing the pre-

dictive performance of using information collected around the

time of injury. We note that this is not an attempt to measure the

performance of existing proprietary models. In addition, we em-

ploy deep learning approaches, which are powerful, but problem-

atic in terms of complexity, power usage, and interpretability.70–72

Work described in Supplementary Material S5 examines the im-

pact of longitudinal observations on prediction of future work sta-

tus using other machine learning architectures. These results

suggest that longitudinal observation data plays an important role

in predicting future work status. Of note, these models demon-

strate worse discriminative performance than the proposed model

implemented with deep learning. Further study is needed to fully

explore architecture tradeoffs. Although we observed performance

degradation when using simpler model architectures, some of the

benefits of longitudinal data are still realized under the simpler

architectures. It is possible that there may be modeling approaches

that provide similar performance benefits to deep learning with

less complexity and more interpretability.73–75 This could be a

fruitful direction for future research.

Given the scope of this work, we focused entirely on utilizing ret-

rospectively collected data. To fully assess the utility of using longi-

tudinal observations in real-world usage, the proposed model would

need to be studied with a prospective implementation. Finally, the

usage of claims-based workers’ compensation data provides a lim-

ited view into the recovery process, especially when viewed from the

lens of algorithmic bias. Although our claims-dataset contains time-

stamped information regarding diagnoses and treatments, this is an

incomplete depiction of recovery from OIs. For example, job type is

a very limited representation of the occupation of the worker and a

great deal of recovery depends on psychosocial factors that are not

explicitly captured through claims.12,76 With additional psychoso-

cial information, the proposed framework would likely be able to

create models with greater predictive performance that account for

these factors.

Our study is, to the best of our knowledge, the first to evaluate

the potential of dynamically predicting RTW for injured workers us-

ing longitudinal observations. Future work using other large claims

or electronic health records datasets may address some of the limita-

tions described above.

CONCLUSION

In this article, we establish the value of using longitudinal observa-

tions for the RTW prediction task by comparing approaches that

use information collected in the first week of an OI to longitudinal

information collected over the course of recovery. For this compari-

son, we proposed a new formulation for OI prediction as a dynamic

work status prediction task. We utilized an approach that trans-

forms longitudinal claims data into a sequence of observations.

These longitudinal observations are fed to a recurrent neural

network-based model to generate predictions about an injured

worker’s future work status, and can be used to update estimates

over time. Thus, the longitudinal observation approach could help

physicians and payers efficiently manage large populations and en-

able industrial organizations to better plan for their workforce

needs. If our initial findings are borne out through subsequent

modeling and validation studies, the dynamic prediction of RTW

may provide crucial support in clinical decision-making, providing

aid for a problem that plagues many insurers, governments, and

workers.
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