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Abstract

Rationale: The Epic Deterioration Index (EDI) is a proprietary
prediction model implemented in over 100 U.S. hospitals that
was widely used to support medical decision-making during the
coronavirus disease (COVID-19) pandemic. The EDI has not been
independently evaluated, and other proprietary models have been
shown to be biased against vulnerable populations.

Objectives: To independently evaluate the EDI in hospitalized patients
with COVID-19 overall and in disproportionately affected subgroups.

Methods: We studied adult patients admitted with COVID-19 to
units other than the intensive care unit at a large academic medical
center fromMarch 9 throughMay 20, 2020.We used the EDI, calculated
at 15-minute intervals, to predict a composite outcome of intensive care
unit–level care, mechanical ventilation, or in-hospital death. In a subset
of patients hospitalized for at least 48 hours, we also evaluated the ability
of the EDI to identify patients at low risk of experiencing this composite
outcome during their remaining hospitalization.

Results: Among 392 COVID-19 hospitalizations meeting
inclusion criteria, 103 (26%) met the composite outcome. The

median age of the cohort was 64 (interquartile range, 53–75) with
168 (43%) Black patients and 169 (43%) women. The area under the
receiver-operating characteristic curve of the EDI was 0.79 (95%
confidence interval, 0.74–0.84). EDI predictions did not differ by
race or sex.When exploring clinically relevant thresholds of the EDI,
we found patients whomet or exceeded an EDI of 68.8 made up 14%
of the study cohort and had a 74% probability of experiencing the
composite outcome during their hospitalization with a sensitivity of
39% and a median lead time of 24 hours from when this threshold
was first exceeded. Among the 286 patients hospitalized for at least
48 hours who had not experienced the composite outcome, 14 (13%)
never exceeded an EDI of 37.9, with a negative predictive value of
90% and a sensitivity above this threshold of 91%.

Conclusions: We found the EDI identifies small subsets of
high-risk and low-risk patients with COVID-19 with good
discrimination, although its clinical use as an early warning system is
limited by low sensitivity. These findings highlight the importance of
independent evaluation of proprietary models before widespread
operational use among patients with COVID-19.
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The coronavirus disease (COVID-19)
pandemic is straining the capacity of
hospitals and healthcare systems across the
United States (1, 2). Accurately identifying
subgroups of patients with COVID-19 at
high risk and low risk for adverse outcomes
could help to alleviate this strain by better
directing scarce resources to those patients
at greatest need. This need has led to the
development and use of clinical prediction
models in patients with COVID-19. Many
of these models suffer from a high risk of
bias due to sample sizes too small to allow
for both model development and validation
(3). Although the majority of studies have
focused on newly developed models, many
models already exist to detect clinical
deterioration among hospitalized patients.

One of the most widely used models is
the Epic Deterioration Index (EDI), which is
implemented in hundreds of U.S. hospitals
(4). The EDI was developed using data from
three healthcare organizations between 2012
and 2016, and it uses clinical data to
calculate risk scores at regular 15-minute
intervals throughout a patient’s stay starting
from the time of hospital admission.
Although not specific to patients with
COVID-19, the EDI has been widely used
during the pandemic to support decision-
making in patients with COVID-19 (5–7).

The widespread use of the EDI raises
implementation concerns because there are
no peer-reviewed publications describing its
validity in any patient population. These
concerns are particularly salient given that
health systems are using the EDI in
conflicting ways and with substantially
different thresholds (7). Even before the
onset of COVID-19, publicly available
information about the EDI was limited to
anecdotal reports of its value in critically ill
patients (8, 9). The proprietary nature of
models such as the EDI makes independent
validation difficult because of a lack of
complete information on the model’s
functional form and parameters (10).
However, independent evaluation is needed
because hospital-based models often do not
perform well in external validation studies
and because the performance of models
erodes over time as use patterns change (11).
In addition, some widely adopted
proprietary models have previously been
shown to be biased against Black patients
even when race was not included as a
predictor (12, 13). Given that COVID-19
disproportionately impacts Black
individuals with respect to its incidence and

complications (14), the validity of the EDI
needs to be established generally and for
vulnerable subpopulations.

These concerns have not prevented its
use from being advocated (5). An Epic
Systems spokesperson recently stated that
“some hospitals are now using the model
with confidence,” (6) whereas others suggest
it is “helping save lives.” (4) In this context,
we sought to independently validate the
ability of the EDI to predict adverse
outcomes among diverse patients
hospitalized with COVID-19 at a large
academic medical center. We also stratified
our evaluation by race, sex, and age to
evaluate the model performance among key
subgroups of patients. Our findings have
potential implications for how the EDI—
currently deployed in hundreds of U.S.
hospitals (4)—may be validated and used by
healthcare systems during the COVID-19
pandemic, and more broadly in how
proprietary models should be evaluated.

Methods

Study Cohort
Our study cohort included adults 18 years
and older diagnosed with COVID-19 who
were admitted to Michigan Medicine
(i.e., the academic health system of the
University of Michigan in Ann Arbor)
between March 9, 2020, and May 20, 2020,
from the emergency department, outpatient
clinics, and outside hospital transfers. We
excluded encounters where patients were
admitted directly to an intensive care unit
(ICU) (n= 215) or were discharged to home
or a separate facility on hospice (n= 34) or
where EDI scores were not available
(n= 10). Patients who transitioned to
comfort care or end-of-life care in the
hospital were not excluded. We also
excluded patients who remained
hospitalized but had not yet experienced the
composite outcome described below
(n= 27), because it was not possible to
determine with certainty whether they
would reach the primary outcome during
their hospitalization. The study was
approved by the Institutional Review Board
of the University of Michigan Medical
School, and the need for consent was
waived.

The Epic Deterioration Index Model
The EDI is generated from a proprietary
early-warning prediction model developed

by Epic Systems Corporation using data that
are routinely recorded within its electronic
health record. Epic is one of the largest
healthcare software vendors in the world,
and its electronic health record is used by
most U.S. News and World Report’s top-
ranked healthcare systems and reportedly
includes medical records for nearly 180
million Americans (or 56% of the U.S.
population) (15).

The EDI aims to detect patients who
deteriorate and require higher levels of care.
Its score ranges from 0 to 100, in which the
higher numbers denote a greater risk of
experiencing a composite adverse outcome
of requiring rapid response, resuscitation,
ICU-level care, or dying in the next 12–38
hours. Details related to the specific cohorts,
within which the model was developed,
the model parameters, and its detailed
performance characteristics have not
been shared publicly or described in the
published literature.

All hospitalized patients at Michigan
Medicine have had calculations of the EDI
as part of an ongoing evaluation of its
clinical utility since late 2018; however, the
EDI was not used in any clinical protocols
during this time period and thus clinicians
were blinded to the score. Calculations of the
EDI begin immediately after hospital
admission and then continue at regular 15-
minute intervals until discharge. Although
the algorithm was developed before the
COVID-19 pandemic, it includes several
predictors that may be clinically relevant in
patients with COVID-19, including age,
vital sign measurements (systolic blood
pressure, temperature, pulse, respiratory
rate, oxygen saturation), nursing
assessments (Glasgow Coma Scale,
neurological assessment, cardiac rhythm,
oxygen requirement), and laboratory values
(hematocrit, white blood cell count,
potassium, sodium, blood pH, platelet
count, blood urea nitrogen).

Definition of the Primary Outcome
We defined our primary outcome as a
composite of adverse outcomes that
included the first of any of the following
events that occurred during the
hospitalization: ICU-level care, mechanical
ventilation, or in-hospital death. We chose
to include these adverse events for the
composite outcome because they are highly
relevant in the clinical care of patients with
COVID-19, in which rapid respiratory
decline is frequently described.
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Evaluation of the EDI to Identify
High-Risk Patients
We used scores from the EDI calculated
every 15 minutes throughout the
hospitalization to predict the composite
adverse outcome during the hospitalization.
For patients who experienced the outcome,
we only used EDI scores calculated
before the outcome. We evaluated the
discriminative performance of the EDI
using the area under the receiver-operating
characteristic curve (AUC). The AUC
represents the probability of correctly
ranking two randomly chosen individuals
(one who experienced the event and one
who did not). Because the model runs every

15 minutes on all hospitalized patients, we
calculated the AUC on the basis of the entire
trajectory of predictions.

The AUC was calculated at the
hospitalization level using the strategy
defined by Henry and colleagues and Oh
and colleagues (16, 17) The rationale for
evaluating the AUC at the hospitalization
level is that if a hypothetical alert were to be
linked to a score threshold, whether the alert
ever fired for any given patient would
depend on whether this threshold was ever
exceeded during the hospitalization. The
EDI is recalculated every 15 minutes, and if
a patient crossed a given alerting threshold
even once, this would bring the patient

to the clinician’s attention if linked to an
alert.

Predictions of deterioration are most
beneficial when an appropriate lead time
is available for action by clinicians. We
therefore calculated a median lead time for
the primary outcome by comparing when
patients were first deemed high risk during
their hospitalization (based on the “high-
risk” threshold selected by intensivists) to
when they experienced the outcome. In
all cases, we calculated empirical 95%
confidence intervals (95% CIs) for the
AUC using 1,000 bootstrap replicates of
our study cohort. Although it is unknown
whether the EDI can be interpreted as a
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Figure 1. High-risk analysis plot showing the relationship between the Epic Deterioration Index (EDI) threshold and the sensitivity, specificity, PPV, and NPV,
with a histogram demonstrating the distribution of maximumEDI per patient. The high-risk area (>68.8) is shaded in orange. NPV=negative predictive value;
PPV=positive predictive value.
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probability, model calibration was assessed
using a calibration curve by comparing
deciles of all predicted EDI to the observed
risk.

Sensitivity Analysis

Recalculation of the AUC at the prediction
level with varying prediction horizons. To
enhance the comparability of our evaluation
to related work in this domain, we
recalculated the AUC using a 4-hour, 8-
hour, 12-hour, and 24-hour prediction time
horizon for the outcome. In this analysis, we
considered patients to only have met the
outcome from the time of a prediction if the
outcome occurred within the prediction
horizon, and we calculated the AUC at the
prediction level.

Disparate Impact Analyses
To evaluate how the EDI performs in
vulnerable populations, we conducted two
analyses. First, we compared the mean EDI
in demographic subgroups and in those with
and without the following comorbidities:
cardiac arrhythmias, chronic kidney disease,
chronic pulmonary disease, congestive heart
failure, depression, diabetes mellitus,

hypertension, liver disease, metastatic
cancer, obesity, rheumatoid arthritis or
other collagen vascular diseases, and solid
tumors without metastases. This analysis
was conducted to identify which
comorbidities result in a higher EDI score,
recognizing that comorbidities are not
directly included in the EDI model. Then,
we compared the AUC for defined by age
(>65 yr vs. ,65 yr), sex, and race to
determine if the EDI performs equally well
in these subgroups.

Evaluation of the EDI to Identify
Low-Risk Patients 48 Hours
after Admission
Another potential use of the EDI is to
identify patients at low risk who could be
sent home or to a lower-acuity setting,
thereby offloading hospitals. Our goal
was to evaluate how well the EDI at
the end of 48 hours could identify
patients at a low risk of experiencing the
outcome during the remainder of their
hospitalization. We selected 48 hours
following admission because decisions to
triage patients to lower-acuity care within
this timeframe may be valuable to hospital
systems struggling in response to a surge

of inpatient cases. For this analysis, we
excluded patients who were discharged
or experienced the composite outcome
within the first 48 hours as triage decisions
were not relevant for this group (n= 65). We
did this to remove very low-risk patients
who were discharged as well as very high-
risk patients who experienced the primary
outcome early. The AUC was calculated
based on the maximum EDI in the first 48
hours, with 95%CI based on 1,000 bootstrap
replicates.

Selection of Clinically
Actionable Thresholds
We calculated sensitivities, specificities,
positive predictive values, and negative
predictive values across the entire spectrum
of EDI thresholds. We identified two
clinically actionable thresholds based on the
threshold-performance plots in consultation
with intensivists on our research team
(T.S.V. and M.W.S.): one for identifying
high-risk patients who will likely need ICU-
level care (based on the EDI throughout the
hospitalization) and one for identifying low-
risk patients who may be appropriate for
lower-acuity care (based on the 48-h
analysis).

Table 1. Patient characteristics overall and stratified by adverse outcomes

Variable Overall
(n= 392)

Adverse Outcome
[n= 103 (26%)]

No Adverse Outcome
[n=289 (74%)]

P Value

Age, median (IQR), yr 64 (53–75) 69 (59–80) 62 (50–72) ,0.001
Female, n (%) 169 (43) 37 (36) 132 (46) 0.11

Race, n (%) 0.041
Black 168 (43) 45 (44) 123 (43)
White 162 (36) 50 (49) 112 (39)
Other 42 (11) 4 (3.9) 38 (13)
Unknown 20 (5.1) 4 (3.9) 16 (5.5)

Comorbidities, n (%)*
Cardiac arrhythmias 181 (48) 63 (62) 118 (42) ,0.001
Chronic kidney disease 143 (38) 60 (59) 83 (30) ,0.001
Chronic pulmonary disease 125 (33) 40 (40) 85 (31) 0.13
Congestive heart failure 78 (21) 35 (35) 43 (15) ,0.001
Depression 127 (34) 43 (43) 84 (30) 0.033
Diabetes 158 (42) 57 (56) 101 (36) ,0.001
Hypertension 286 (75) 87 (86) 199 (72) 0.005
Liver disease 49 (13) 14 (15) 35 (13) 0.88
Metastatic cancer 53 (14) 22 (22) 31 (11) 0.013
Obesity 159 (42) 43 (43) 116 (42) 0.98
Rheumatoid arthritis or collagen vascular disease 30 (7.9) 14 (14) 16 (5.8) 0.018
Solid tumor without metastases 68 (18) 23 (23) 45 (16) 0.18

Definition of abbreviation : COVID-19 += coronavirus disease 2019; IQR= interquartile range; ICD-10= International Classification of Diseases,
Tenth Revision.
Continuous variables were compared using a Wilcoxon test. Proportions were compared using a Chi-squared test.
*Comorbidities were calculated using ICD-10 codes from all prior encounters, including the COVID-19 encounter when available. Comorbidities
were unavailable for 13 (3.3%) patients, 2 of whom experienced adverse outcomes and 11 of whom did not, and were excluded from the
denominator.
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Software
We used R 3.6.0 for all analyses, as
well as the pROC and runway packages
(18, 19). We have made our statistical code
available at https://github.com/ml4lhs/
edi_validation.

Results

We identified 392 hospitalizations for 369
patients with COVID-19 who met inclusion
criteria for our study cohort. Two patients
had three hospitalizations and 19 patients
had two hospitalizations. At the
hospitalization level (n= 392), the median
age of patients was 64 years (interquartile
range [IQR], 53–75), 169 (43%) were
women, and 168 (43%) were Black (Table 1).

The composite adverse outcome occurred in
103 (26%) out of the 392 hospitalizations
with a median length of follow-up of 5.3
days (IQR, 2.9–10.7; max 49). The outcome
occurred at a median of 2.5 days (IQR,
0.65–5.0; max 24) after admission. Of
all hospitalizations, 88 (22%) resulted in
ICU-level care, 44 (11%) in mechanical
ventilation, and 35 (8.9%) in death in the
hospital. Those who experienced an adverse
outcome were older, more likely to be white,
and more likely to have a history of cardiac
arrhythmias, chronic kidney disease,
congestive heart failure, depression,
diabetes, hypertension, metastatic cancer,
and rheumatoid arthritis or other collagen
vascular diseases (all P, 0.05) (see Table 1).

Overall, the EDI score had an AUC of
0.79 (95% CI, 0.74–0.84) as a continuous

predictor of risk. The performance
characteristics of the EDI score are reported
in Figure 1. Patients whomet or exceeded an
EDI of 68.8 had a 74% probability of
experiencing the primary outcome during
their hospitalization (i.e., positive predictive
value) with a sensitivity of 39%, and they
made up 14% of the study cohort. At this
threshold, one deteriorating patient would
be identified for every 1.4 patients in whom
an alert was generated, a quantity also
known as the number needed to evaluate
(20). The median lead time from when the
threshold was first exceeded to when the
outcome occurred was 24 hours (IQR,
1.4–83). The entire distribution of lead
times is further described in Figure 2.
Figure 3 evaluates model calibration and
demonstrates that the EDI systematically
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overpredicts the risk of experiencing the
primary outcome if interpreted as a
probability. We found the prediction-level
AUCs to be similar to those in our primary
analysis although the positive predictive
values were lower due to the shorter
prediction horizon (Appendix Table 3 in the
online supplement, Appendix Figures 1
and 2).

In the disparate impact analyses, we
found that EDI predictions did not differ by
sex or race (Appendix Table 1). We did find
higher EDI scores for patients 65 and older
and those with cardiac arrhythmias, chronic
kidney disease, chronic pulmonary disease,
congestive heart failure, diabetes, and
hypertension. In an analysis of model
performance by subgroup, the EDI
performed similarly across the demographic
subgroups although the model appeared
to perform better in patients with liver
disease as compared with those without it
(P= 0.028) (Appendix Table 2).

In the subset of 286 patients who had
not been discharged or experienced the
primary outcome at 48 hours, 55 (19%)
experienced the composite outcome at some
point during the remainder of their
hospitalization. In this setting, the EDI had a
hospitalization-level AUC of 0.65 (95% CI,

0.57–0.73). The performance characteristics
of the 48-hour maximum EDI in this subset
of patients are reported in Figure 4. A total
of 14 (13%) patients who never exceeded an
EDI of 37.9 in the first 48 hours of their
hospitalization had a 90% probability of not
experiencing the outcome (i.e., negative
predictive value) for the remainder of the
hospitalization (median remaining follow-
up of 3.8 d [IQR, 1.7–8.9]) with a sensitivity
of 91% above this threshold.

Figure 5 demonstrates four examples of
EDI patterns in patients with COVID-19
overlaid with the identified high- and low-
risk thresholds (>68.8 for high risk and
,37.9 for low risk, respectively). As shown
in the bottom-left and top-right panels of
this figure, the EDI fluctuates substantially
for individual patients with each assessment
over the regular 15-minute intervals.

Discussion

Our study constitutes the first publicly
reported independent validation of the EDI
in any patient population. Our results
suggest that the EDI exhibits good
discrimination for the prediction of
adverse outcomes in a diverse COVID-19

population. It demonstrated good
performance in identifying higher-risk
patients in our cohort, identifying a small
proportion of patients with a positive
predictive value of 74% but a relatively low
sensitivity of 39%. There was no single
threshold at which the EDI exhibited both a
high positive predictive value and high
sensitivity. Thus, from a standpoint of
clinical actionability, the model’s utility is
somewhat limited. We found that the
maximum EDI in the first 48 hours of the
hospitalization may help identify a small
subset of low-risk patients who may be
safely transferred to lower-acuity settings
(such as a field hospital), thereby conserving
resources. However, 10% of the patients
identified by the EDI as low risk may
ultimately deteriorate, so the decision to
deescalate care for patients should not be
based solely on the EDI. For the vast
majority of patients whose maximum EDI
score falls in the intermediate-risk range, the
score has limited value to guide clinical
decision-making. We also noted the EDI
fluctuates substantially when calculated at
15-minute intervals, in part because it only
relies on the most recent value for each of
the predictors. Even small changes in
predictors lead to large differences in the
EDI because prior normal values are ignored
when a new value is obtained. Thus, we
recommend that the interpretation of
individual EDI scores be based on whether a
patient ever exceeds specific thresholds. The
substantial variation in EDI scores also
underscores the notion of diminishing
returns when running the model so
frequently.

The proprietary nature of the EDI
raises specific ethical and clinical concerns
in the setting of a pandemic, in which
resources may be scarce and could be
allocated to higher-risk patients based on
the output of this prediction model. We
found no evidence that the EDI is biased
against specific subgroups of vulnerable
patients although the EDI was not always
concordant with the observed differences in
adverse outcomes (in Table 1 as compared
with Appendix Table 2). Although chronic
pulmonary disease was not associated with
an adverse outcome, the maximum EDI
score was higher for patients with chronic
pulmonary disease as compared with those
without it. On the other hand, although
adverse outcomes were more likely in white
patients and patients with depression,
metastatic cancer, and rheumatoid arthritis

1.0

0.9

0.8

0.7

0.6

0.5

0.3

0.4

0.2

0.1

0.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

O
bs

er
ve

d 
R

is
k

Predicted Probability

Figure 3. Calibration curve comparing deciles of all predicted Epic Deterioration Index (EDI), rescaled
to 0 to 1, with the observed risk, with a line demonstrating ideal calibration (solid) and a histogram of
predicted EDI.

ORIGINAL RESEARCH

AnnalsATS Volume 18 Number 7 | July 20211134
 



or other collagen vascular diseases, the
maximum EDI score was not different for
these subgroups. Although we found no
evidence for bias in the EDI score against
Black patients, who are disproportionately
impacted by COVID-19, the wide
confidence intervals (Appendix Table 2)
mean that such bias cannot be definitively
excluded. The EDI score was higher in older
individuals, which is not surprising because
age is a component of the EDI. In the face of
EDI being a proprietary model, many
additional steps should be taken to ensure
that its use is valid and improves outcomes.
First, making the model parameters

available would allow for a more complete
validation and could benefit the public by
enabling the model to be refined and
compared with other existing prediction
models for specific clinical applications (21).
Second, prospective validation of our
proposed thresholds in other centers and
clinical conditions would help validate the
generalizability of the EDI. Third, linking
targeted interventions to specific EDI
thresholds or other clinical assessments
would assess whether the EDI can improve
patient outcomes.

When comparing our observed
performance of the EDI in patients with

COVID-19 against other models reported in
the literature, it is interesting to note the
AUC reported in our study is much lower
than other models in the COVID-19
literature. This could be due in part to the
overfitting of other models in the setting of
relatively small sample sizes. For instance,
Bai and colleagues report an AUC of 0.95 for
inpatient clinical deterioration with a model
developed and validated in a cohort of 133
patients with 75 predictors (22). By contrast,
the EDI was developed on a cohort drawn
from more than 130,000 hospitalizations
(6). Our findings closely match the observed
performance of other deterioration indices
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that have been validated in patients without
COVID-19. In a study of 649,418
hospitalizations, the Advanced Alert
Monitor identified deteriorating patients
with an AUC of 0.82 (23). The electronic
Cardiac Arrest Risk Triage score identified
deteriorating patients with an AUC of 0.80
and 0.79 in two separate evaluations (23,
24). The Rothman index identified clinical
deterioration with an AUC of 0.76 (25).

Our study should be interpreted in
the context of the following limitations.
Our evaluation was limited by its focus
on a single academic medical center and
a relatively small number of patients.
However, our cohort of nearly 400
patients was diverse in sex and race and
larger than many earlier reports. As
compared with a recently described large
cohort of 5,700 patients hospitalized with

COVID-19 in New York, our study
cohort had a higher proportion of
Black patients (43% vs. 23%) and
patients with chronic kidney disease
(38% vs. 5%), congestive heart failure
(21% vs. 7%), and hypertension (75%
vs. 57%) and similar proportions of
women (43% vs. 40%) and patients
with diabetes (42% vs. 34%) and obesity
(42% vs. 42%) (2). Our proposed EDI
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Figure 5. Four example patients, of whom two experienced an adverse outcome, with shaded risk thresholds. Green (Epic Deterioration Index [EDI],37.9)
represents low risk, yellow represents intermediate risk (EDI 37.9 to,68.8), and orange (EDI > 68.8) represents high risk. EDI scores recorded after the
primary outcome are shown in the top panels but were not used in the model validation. The blue line represents transfer to an intensive care unit, and the
red line represents the onset of mechanical ventilation.

ORIGINAL RESEARCH

AnnalsATS Volume 18 Number 7 | July 20211136

E D>

 



thresholds may be influenced by local
factors, including patterns of COVID-19
testing, triage, and decision-making
about hospital admissions and hospital-
to-hospital transfers that contributed
to our study cohort. These EDI thresholds
should be validated in other settings to
assess their generalizability. Additionally,
clinically relevant EDI thresholds may
differ between patients hospitalized
with COVID-19 and other conditions;
thus, a broader validation of the
EDI among hospitalized patients is
warranted.

Conclusions
Despite these limitations, our findings have
important implications for hospitals with
access to the EDI that may be under
substantial capacity constraints and strain
from managing patients with COVID-19.
Our study supports, in part, the role of the
EDI to identify a small subset of high-risk
patients who may benefit from additional
resources and higher-level care and another
limited subset of low-risk patients who may
be cared for safely in lower-acuity settings. It
also suggests opportunities to tailor and
improve risk prediction for this condition

beyond the EDI as data accumulate on
patients with COVID-19. Finally, it
indicates the need for institutions to
independently validate widely used
proprietary models where the vendor is
commonly the only source of model
validation. n
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