Updating Clinical Risk Stratification Models Using Rank-Based Compatibility Evaluating & Optimizing Clinician-Model Team Performance

INFORMS Healthcare 2023 Erkin Ötleş, Jenna Wiens, Brian T. Denton July 2022

Hello, INFORMS!

Medical Scientist Training Program Fellow

MD: x2023

Engineering PhD: 2022

Healthcare ML Dev & Implementation

Previously:

Healthcare Data & Decision Science Manager

Epic Ambulatory Solutions Engineer

Development & Implementation Experience Grounded in Clinical & Technical Knowledge.

Creation & Validation of Models Addressing **Clinical Needs.**

Development

Data Access

Deep understanding of EHR & Claims data

Task **Selection**

Use clinical needs to drive technical foci

Data Preparation Tools

Al Health-State **Prediction Patent**

Data Prep

Developed tools to automate data transformation

Model Training

Extensive experience building ML & Al models

Covid Model BMJ

> **Epic Sepsis Model Validation**

Model Validation

Widely recognized validation studies

Implementation Focused on Bridging Workflow & **Technical Considerations.**

Generating compatible models

Updating

Improving model performance over time

Tracking model performance

Monitoring

Evaluating performance continuously

In-hospital risk prediction

Designing workflows to capture predictive performance

Implementation

Epic Cloud Computing Platform Integration

Debugging Model Implementation

Technical Integration

Connecting models to EHR systems

Custom Predictive Platform Integration

Workflow Integration

Prospective Validation

Ensuring models work in practice

Last but not least.

Data Access

Task Selection

Chapter 4

Develop rank-based compatibility measurement & optimization approaches for model updating

Ötleş *et al.*, In submission '22

Updating

Monitoring

Chapter 2

Chapter 3

Assess value of longitudinal observations for return to work prediction

Ötleş *et al.*, JAMIA '22

6

Counter performance degradation

Performance

Time

Finlayson 2021, David 2017, Hickey 2012, Minne 2012, Bansal 2019

Counter performance degradation

Adapt to infrastructure changes

Time

Counter performance degradation

Adapt to infrastructure changes

Time

Incorporate new data

Time

Updates can mess with user expectations.

Updates can mess with user expectations.

fnew

Team performance may suffer if models don't meet user expectations.

Ferformance

Model Updated

Time

Ideally updated models meet the expectations of users

Compatibility: the amount an updated model continues the correct behavior of an original model

Way to measure user expectations

Goal: updated models should have high compatibility

Team Performance

Time

Bansal 2019

Bansal 2019

Bansal 2019

Updated

Bansal 2019

Backwards Trust Compatibility C^{BT}

The chance that the updated model's labels are correct, given that the original model's labels were correct.

 $C^{BT}(f^o, f^u) = -$ # patients both models label correctly

patients original model labels correctly

Backwards Trust Compatibility C^{BT}

The chance that the updated model's labels are correct, given that the original model's labels were correct.

patients both models label correctly

patients original model labels correctly

Backwards Trust Compatibility C^{BT}

The chance that the updated model's labels are correct, given that the original model's labels were correct.

Backwards Trust Compatibility C^{BT}

original model's labels were correct.

 $C^{BT}(f^o, f^u) = -$ # patients both models label correctly

- The chance that the updated model's labels are correct, given that the

 $1 \rightarrow \text{perfect compatibility}, 0 \rightarrow \text{perfect incompatibility}$

Existing measure depends on equality comparison

Problematic for use in risk stratification model & healthcare settings

Depends on setting a single decision threshold

Existing measure depends on equality comparison

Problematic for use in risk stratification model & healthcare settings

Depends on setting a single decision threshold

Existing measure depends on equality comparison

Problematic for use in risk stratification model & healthcare settings

Depends on setting a single decision threshold

Dr. A Dr. B Dr. C

Existing measure depends on equality comparison

Problematic for use in risk stratification model & healthcare settings

Depends on setting a single decision threshold

Dr. A Dr. B Dr. C

Existing measure depends on equality comparison

Problematic for use in risk stratification model & healthcare settings

Depends on setting a single decision threshold

No direct relationship with AUROC

Dr. A Dr. B Dr. C

Our contributions

Define a new rank-based compatibility measure (C^{R}) Characterize C^{R} and its relationship with AUROC

Custom loss function to engineer model updates with improved C^{R}

Intuition: C^R should inherit from both C^{BT} & AUROC

 $C^{BT}(f^o, f^u) = \frac{\text{\# patients both models label correctly}}{\text{\# patients original model labels correctly}}$

Evaluate correct behavior of both models Normalized based on original model's behavior

 $AUROC(f^{o}) = \frac{\sum_{i \in I^{0}} \sum_{j \in I^{1}} \mathbf{1}(\hat{p}_{i}^{o} < \hat{p}_{j}^{o})}{\sum_{i \in I^{0}} \sum_{j \in I^{1}} \mathbf{1}(\hat{p}_{i}^{o} < \hat{p}_{j}^{o})}$ M

"Correctness" based on risk estimate ordering

Rank-based compatibility C^R

Agreement of risk estimate rankings produced by original & updated models given original ranked correctly:

 $\sum \mathbf{1}(\hat{p}_{i}^{o} < \hat{p}_{j}^{o}) \cdot \mathbf{1}(\hat{p}_{i}^{u} < \hat{p}_{j}^{u})$

Rank-based compatibility C^R

Agreement of risk estimate rankings produced by original & updated models given original ranked correctly:

 $\sum \mathbf{1}(\hat{p}_{i}^{o} < \hat{p}_{j}^{o}) \cdot \mathbf{1}(\hat{p}_{i}^{u} < \hat{p}_{j}^{u})$

Rank-based compatibility C^R

Agreement of risk estimate rankings produced by original & updated models given original ranked correctly:

original model ranks correctly
Rank-based compatibility C^R

Agreement of risk estimate rankings produced by original & updated models given original ranked correctly:

Rank-based compatibility C^R

Agreement of risk estimate rankings produced by original & updated models given original ranked correctly:

Rank-based compatibility C^R

Agreement of risk estimate rankings produced by original & updated models given original ranked correctly:

$$C^{R}(f^{o}, f^{u}) = \frac{\sum_{i \in I^{0}} \sum_{j \in I^{1}} \mathbf{1}(\hat{p}_{i}^{o} + p_{i})}{\sum_{i \in I^{0}} \sum_{j \in I^{1}} \sum_{i \in I^{0}} \sum_{j \in I^{1}} p_{i}}$$

1 \rightarrow perfect compatibility, 0 \rightarrow perfect incompatibility

$\langle \hat{p}_j^o \rangle \cdot \mathbf{1}(\hat{p}_i^u < \hat{p}_j^u)$

 $\mathbf{1}(\hat{p}_{i}^{o} < \hat{p}_{i}^{o})$

C^R is a new compatibility measure inspired by AUROC

Not threshold dependent.

offs.

Lower bound of C^R expected to increase as model performance increases.

Has a direct relationship with AUROC which we can use to assess trade-

Q1: Do we get C^R for free when we make updated models targeting AUROC?

updated models using binary cross entropy loss?

Hypothesis: No, analytically we'd expect that C^R is centered at a region away from the upper and lower bounds.

More specifically: do we observe $C^R = 1$ (or very close) when we train

Original Model n = 1,000

Original Model Development n = 500

Original Model Validation n = 500

Updated Model Dataset n = 5,000

Updated Model Development n = 2,500

Updated Model Validation n = 2,500

Alistair 2016, Bansal 2019, Tang 2020

Evaluation Dataset n = 2,577

MIMIC-III Mortality Dataset

Original Model n = 1,000

Original Model Development n = 500

Original Model Validation n = 500

Updated Model Development n = 2,500

Updated Model Validation n = 2,500

Updated Model Dataset n = 5,000

Original Model n = 1,000

Original Model Development n = 500

Original Model Validation n = 500

Updated Model Validation n = 2,500

Updated Model Dataset n = 5,000

Updated Model Development n = 2,500

Original Model n = 1,000

Original Model Development n = 500

Original Model Validation n = 500

Updated Model Dataset n = 5,000

Updated Model Development n = 2,500

Updated Model Validation n = 2,500

Results

Results

Results

Q1: Do we get C^R for free when we make updated models targeting AUROC?

No.

We observe updated models have a limited range in C^{R} .

Analytical results suggest that there's a large search space.

- Motivates techniques to search for updated models that have higher C^R .

Risk stratification models are usually trained with binary cross entropy loss.

Binary cross entropy loss:

Minimization of \mathscr{L}^{BCE} leads to higher AUROC because risk estimates tend to align with labels.

$$\log(1 - \hat{p}_i) - \sum_{j \in I^1} \log(\hat{p}_j)$$

Risk stratification models are usually trained with binary cross entropy loss.

Binary cross entropy loss:

 $\mathscr{L}^{BCE}(f) = -\sum_{i \in I^0}^{1}$

Minimization of \mathscr{L}^{BCE} leads to higher AUROC because risk estimates tend to align with labels.

Make 0-labeled patients / have low risk estimates

$$\frac{\log(1-\hat{p}_i)}{j \in I^1} - \sum_{j \in I^1} \log(\hat{p}_j)$$

Risk stratification models are usually trained with binary cross entropy loss.

Binary cross entropy loss:

Minimization of \mathscr{L}^{BCE} leads to higher AUROC because risk estimates tend to align with labels.

Risk stratification models are usually trained with binary cross entropy loss.

Binary cross entropy loss:

Minimization of \mathscr{L}^{BCE} leads to higher AUROC because risk estimates tend to align with labels.

No focus on compatibility between the updated and original model.

We introduce rank-based incompatibility loss.

Rank-based incompatibility loss:

Minimization of \mathscr{L}^R will lead to higher levels of C^R .

Differentiable approximation \mathscr{L}^{R} for SGD.

$\mathscr{L}^{R}(f^{o}, f^{u}) = 1 - C^{R}(f^{o}, f^{u})$

Weighted loss trades-off between binary cross entropy and compatibility.

Weighted loss function:

When:

 $\alpha = 1$ then only minimize \mathscr{L}^{BCE} , † AUROC

 $\alpha=0$ then only minimize $\widetilde{\mathscr{L}^R}$, † C^R

 $\alpha = 0.5$ then balance \mathscr{L}^{BCE} and \mathscr{L}^{R}

 $\alpha \mathscr{L}^{BCE}(f^u) + (1 - \alpha) \widetilde{\mathscr{L}^R}(f^o, f^u)$

where $\alpha \in [0,1]$

Q2: Can we make updated models with higher levels of CR2

Specifically: Compared to standard update model generation and updates with better C^R ?

 C^{R}

Also. can this be accomplished without a loss of AUROC?

selection approaches, can we use the weighted loss function to generate

Hypothesis: using weighted loss function will produce models with better

Q2: Extends Previous Experimental Setup

Original Model n = 1,000

Original Model Development n = 500

Original Model Validation n = 500

Updated Model Dataset n = 5,000

Updated Model Development n = 2,500

Updated Model Validation n = 2,500

Q2: Updated Models Selection vs. Optimization

Selection

150 "selection" models created through training with \mathscr{L}^{BCE} and randomly resampling the development dataset

Optimization

11 "optimization" models created through training with weighted loss with $\alpha = \{0, 0.1, ..., 0.9, 1\}$

Q2: Updated Models Selection vs. Optimization

Selection

Use a selection procedure to pick an updated model to use as a baseline

For example model with best validation AUROC

Optimization

Examine difference in held out evaluation C^R and AUROC

Q2: C^R performance results

Q2: C^R performance results

Q2: AUROC performance results

Q2: AUROC performance results

Q2: Performance results

Q2: α=0.6 yields promising updated models

Summary of experiments

Do we get C^R for free when we make updated models targeting AUROC? No.

Can we make updated models with higher levels of C^R?
Yes, using our weighted loss function.
Does that come at a cost in terms of AUROC?
Sort of...

Team Performance

Team performance difference induced by compatibility

Time

Team Performance

Team performance difference induced by compatibility

Affects physician users. Impacts patient lives.

Time

Team Performance

Time

C^R is a new compatibility measure inspired by AUROC

Not threshold dependent: \uparrow clinical utility Has direct relationship with AUROC Can balance AUROC and C^R Using $\widetilde{\mathscr{L}^R} \to \uparrow C^R$ & \uparrow AUROC Real-world model updating case-study

eotles@umich.edu @eotles

Rank-based compatibility improves the whole life-cycle

Development & validation of models to predict pathological outcomes of radical prostatectomy <u>Ötleş et al., 2022</u>

Data Access

Task Selection

Rank-based compatibility measurement & optimization for model updating

Updating

Monitoring

