Updating Clinical Risk Stratification Models Using Rank-Based Compatibility Evaluating & Optimizing Clinician-Model Team Performance

MLHC 2023 Erkin Ötleş, Brian T. Denton, Jenna Wiens August 2023

Updates can mess with user expectations.

Updates can mess with user expectations.

fnew

Team performance may suffer if models don't meet user expectations.

Ferformance

Model Updated

Time

Ideally updated models meet the expectations of users

Compatibility: the amount an updated model continues the correct behavior of an original model

Way to measure user expectations

Goal: updated models should have high compatibility

Team Performance

Time

Existing measure depends on equality comparison

Problematic for use in risk stratification model & healthcare settings

Depends on setting a single decision threshold

Existing measure depends on equality comparison

Problematic for use in risk stratification model & healthcare settings

Depends on setting a single decision threshold

Existing measure depends on equality comparison

Problematic for use in risk stratification model & healthcare settings

Depends on setting a single decision threshold

Dr. A Dr. B Dr. C

Existing measure depends on equality comparison

Problematic for use in risk stratification model & healthcare settings

Depends on setting a single decision threshold

Dr. A Dr. B Dr. C

Existing measure depends on equality comparison

Problematic for use in risk stratification model & healthcare settings

Depends on setting a single decision threshold

No direct relationship with AUROC

Dr. A Dr. B Dr. C

Our contributions

Define a new rank-based compatibility measure (C^{R}) Characterize C^{R} and its relationship with AUROC

Custom loss function to engineer model updates with improved C^{R}

Agreement of risk estimate rankings produced by original & updated models given original ranked correctly:

 $\sum \mathbf{1}(\hat{p}_{i}^{o} < \hat{p}_{j}^{o}) \cdot \mathbf{1}(\hat{p}_{i}^{u} < \hat{p}_{j}^{u})$

Agreement of risk estimate rankings produced by original & updated models given original ranked correctly:

 $\sum \mathbf{1}(\hat{p}_{i}^{o} < \hat{p}_{j}^{o}) \cdot \mathbf{1}(\hat{p}_{i}^{u} < \hat{p}_{j}^{u})$

Agreement of risk estimate rankings produced by original & updated models given original ranked correctly:

original model ranks correctly

Agreement of risk estimate rankings produced by original & updated models given original ranked correctly:

Agreement of risk estimate rankings produced by original & updated models given original ranked correctly:

Agreement of risk estimate rankings produced by original & updated models given original ranked correctly:

$$C^{R}(f^{o}, f^{u}) = \frac{\sum_{i \in I^{0}} \sum_{j \in I^{1}} \mathbf{1}(\hat{p}_{i}^{o} + p_{i}^{o})}{\sum_{i \in I^{0}} \sum_{j \in I^{1}} \sum_{i \in I^{0}} \sum_{j \in I^{1}} p_{i}^{o}}$$

1 \rightarrow perfect compatibility, 0 \rightarrow perfect incompatibility

$\langle \hat{p}_j^o \rangle \cdot \mathbf{1}(\hat{p}_i^u < \hat{p}_j^u)$

 $1(\hat{p}_{i}^{o} < \hat{p}_{i}^{o})$

We introduce rank-based incompatibility loss.

Rank-based incompatibility loss:

Minimization of \mathscr{L}^R will lead to higher levels of C^R .

Differentiable approximation \mathscr{L}^{R} for SGD.

$\mathscr{L}^{R}(f^{o}, f^{u}) = 1 - C^{R}(f^{o}, f^{u})$

C^R is a new compatibility measure inspired by AUROC

Not threshold dependent: 1 clinical utility

Has a direct relationship with AUROC which we can balance against compatibility

In the paper you'll find...

Empirical results characterize C^R

Using $\widetilde{\mathscr{L}^R} \to \uparrow C^R \& \uparrow AUROC$

eotles@umich.edu @eotles