

Updating clinical risk models pose challenges when updated models don't meet user expectations.

Compatibility quantifies how an updated model continues the correct behavior exhibited by an original model

Existing measures operate by comparing labels

$$C^{BT}(f^o, f^u) = \frac{\# \text{ patients both models label corr}}{\# \text{ patients original model labels co}}$$

Gap: Limited use in updating healthcare risk stratification models; incongruous with multiple thresholds, resource-based usage, and AUROC

How can we measure and optimize compatibility in a way that is better suited for updating risk stratification models?

We propose a rank-based compatibility measure based on the concordance of risk estimate pairs

Problem Setup

Risk stratification models, $f(\cdot)$, map features, x_i , to risk estimates, \hat{p}_i , for each patient, *i*

Goal: we seek to assess the compatibility between an original model $f^{o}(\cdot)$ and an updated model $f^{u}(\cdot)$

The set of patients, *I*, can be split based on their labels: 0-labeled, I^0 , and 1-labeled, I^1

A *patient-pair*, are two patients *i* and *j*, that do not share the same la $i \in I^0$ and $j \in I^1$

Intuition: we develop a compatibility measure inheriting AUROC's no of correct risk estimate ordering.

Updating Clinical Risk Stratification Models Using Rank-Based Compatibility

Erkin Ötleş, Brian T. Denton, Jenna Wiens

Medical Scientist Training Program, Industrial & Operations Engineering, Computer Science & Engineering

Rank-based Compatibility

We propose

 $C^{R}(f^{o}, f^{u}) = \frac{\sum_{i \in I^{0}} \sum_{j \in I^{1}} \mathbf{1}(\hat{p}_{i}^{o} < \hat{p})}{\sum_{i \in I^{0}} \sum_{j \in I^{1}} \mathbf{1}}$

fnew

rectly orrectly

the proportion of patient-pairs correctly ranked by both models normalized by the original model's AUROC

Optimizing for rank-based compatibility

 $\widetilde{L^{R}}(f^{o}, f^{u}) = 1 - \frac{\sum_{i \in I^{0}} \sum_{j \in I^{1}} \sigma(\hat{p}_{j}^{o} - \hat{p}_{i}^{o}) \cdot \sigma(\hat{p}_{j}^{u} - \hat{p}_{i}^{u})}{\sum_{i \in I^{0}} \sum_{i \in I^{1}} \sigma(\hat{p}_{i}^{o} - \hat{p}_{i}^{o})}$

Approximate rank-based incompatibility loss, $\widetilde{L^R}$, is a loss function based on approximation of C^R and uses the ranking sigmoid function:

 $\sigma(\hat{d}_{ji}) = \frac{1}{1 + \exp(-s \cdot i)}$

This can be weighted against binary cross entropy loss, L^{BCE}

 $\alpha L^{BCE}(f^u) + (1-\alpha)\widetilde{L^R}(f^o, f^u)$

Does *C*^{*R*} **come for free**?

Q1: What is the empirical distribution of C^R achieved using standard model updates? **Q2**: Compared to standard model update generation and selection approaches, can we use L^R to generate updates with better C^R ?

Data: MIMIC-III **Task**: predict in-hospital mortality based on the first 48 hours of ICU stay

abel	Original Model Dataset	Updated Model Dataset
otion	Original Model Dev. n = 500	Updated Model Dev. n = 2,500
	Original Model Val. n = 500	Updated Model Val. n = 2,500

$$\frac{\hat{p}_j^o) \cdot \mathbf{1}(\hat{p}_i^u < \hat{p}_j^u)}{\left(\hat{p}_i^o < \hat{p}_j^o\right)}$$

$$\cdot \hat{d}_{ji})$$

Results

For **Q2** we assessed the difference in performance and compatibility between models trained using only L^{BCE} and those trained with a weighted combination of L^{BCE} and L^R . This selection was done using:

Q2: Incorporating C^R into the objective function generates model updates with larger C^R than obtained through standard procedures

High rank-based compatibility is not guaranteed but can be achieved through optimization, which can yield updated models that better meet user expectations, promoting clinician-model team performance.

eotles@umich.edu

Q1: Model developers may be limited when selecting updated models that maximize C^R when using standard update generation procedures.

