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Time plays an important role in medicine.
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Time complicates ML model development & 
implementation.
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Thesis: by focusing on the longitudinal nature of 
healthcare, we can improve the performance of 
predictive models during development & implementation.
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The ML Lifecycle
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What are we going to talk about?
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Let’s dive in.
RTW Prediction

Assess value of  
longitudinal observations 


for return to work prediction
Ötleş et al., JAMIA ‘22

Performance Gap
Characterize changes 

to prospective performance 
after model implementation

Ötleş et al., MLHC ‘21

Updating Models
Develop rank-based compatibility  
measurement & optimization  
approaches for model updating
Ötleş et al., MLHC '23

13

Data 
Prep

Task 
Selection

Data 
Access

Model 
Training

Model 
Validation

Technical 
Integration

Prospective 
ValidationMonitoring

Updating

Workflow 
Integration



Existing return to work models ignore longitudinal 
observations.
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Q: What is the value of longitudinal observations in 
return to work prediction?

More specifically: when predicting future work-status do we observe a 
performance improvement when using longitudinal observations collected 
beyond the time of injury?


Hypothesis: Yes. Longitudinal observations improve predictions in other 
healthcare task.
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Baseline

Experimental Setup
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Day 1 2 3 … 14
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Proposed

55 y.o. male  
postal worker

…

Probability of being 
at work next week

0.59

0.75

Worker’s Compensation 
Claims Data

Ötleş, Seymour, Wang, Denton. Dynamic prediction of work status for workers  
with occupational injuries: assessing the value of longitudinal observations.  
Journal of  the American Medical Informatics Association. 2022 [In Press]



Results
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Discrimination Calibration

Baseline

Proposed

Main Takeaway from RTW Prediction.

Return to work prediction benefits from longitudinal observations.



On to the next one.

21

RTW Prediction
Assess value of  

longitudinal observations 

for return to work prediction

Ötleş et al., JAMIA ‘22

Performance Gap
Characterize changes 

to prospective performance 
after model implementation

Ötleş et al., MLHC ‘21

Updating Models
Develop rank-based compatibility  
measurement & optimization  
approaches for model updating
Ötleş et al., MLHC '23

Data 
Prep

Task 
Selection

Data 
Access

Model 
Training

Model 
Validation

Technical 
Integration

Prospective 
ValidationMonitoring

Updating

Workflow 
Integration



Model performance may degrade after 
implementation.

22Davis 2017, Hickey 2013, Minne 2012
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This degradation is often attributed to changes in 
populations & practice that occurs over time.

23Davis 2017, Hickey 2013, Minne 2012
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However, changes in IT infrastructure may also 
affect the prospective performance gap.
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Degradation due to temporal & infrastructure shift.
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Q: What are the causes of the prospective 
performance gap?

More specifically: what are the temporal and infrastructure shift 
contributions to the prospective performance gap of a prospectively 
implemented model?


Hypothesis: Infrastructure will be an important component of the 
prospective performance gap.
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Ötleş, Oh, Li, Bochinski, Joo, Ortwine, Shenoy, Washer, Young, Rao, Wiens. 
Mind the performance gap: examining dataset shift during prospective validation. 
Machine Learning for Healthcare Conference. 2021.

Experimental Setup

27

Retro 
2019

Prospective 
2020

CDI Model

Retro 
2019

Retrospective 
Performance

Prospective 
Performance



Results

Performance Gap:  0.011 

 Temporal Shift: -0.005  

Infrastructure Shift:  0.016 
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Mind the performance gap: examining dataset shift during prospective validation. 
Machine Learning for Healthcare Conference. 2021.



Infrastructure Matters.
Observed prospective performance gap primarily driven by 
infrastructure shift:


source & processing differ, requires infrastructure updates


timing of access differs, when you access the data affects 
what you access


Infrastructure shift can be mitigated, but first it must be 
recognized!

32



Last but not least.
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Physicians and models function as a team in 
healthcare settings.
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This is complicated because we need to update 
models over time.
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This is complicated because we need to update 
models over time.
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Updates can mess with user expectations.
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f new

Updates can mess with user expectations.
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Team performance may suffer if models don’t 
meet user expectations.

44Adapted from Bansal 2019
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Ideally updated models meet the expectations of 
users

Compatibility: the amount an updated model 
continues the correct behavior of an original 
model


Way to measure user expectations 

Goal: updated models should have high 
compatibility

45Bansal 2019
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Compatibility can be assessed by using the original 
and updated models for the same predictive task.
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Compatibility can be assessed by using the original 
and updated models for the same predictive task.
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Backwards Trust Compatibility CBT

The chance that the updated model’s labels are correct, given that the 
original model’s labels were correct.





1 → perfect compatibility, 0 → perfect incompatibility

CBT( f o, f u) =
 # patients both models label correctly 

 # patients original model labels correctly 
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Problems with existing compatibility measures.

Existing measure depends on equality 
comparison


Problematic for use in risk stratification 
model & healthcare settings


Depends on setting a single decision 
threshold


No direct relationship with AUROC
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Our contributions

Define a new rank-based compatibility measure ( )


Characterize  and its relationship with AUROC


Custom loss function to engineer model updates with improved 

CR

CR

CR
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Intuition:   should inherit from both  & AUROCCR CBT
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AUROC( f o) =
∑
i∈I0

∑
j∈I1

1( ̂po
i < ̂po

j )

m

Evaluate correct behavior of both models 
Normalized based on original model’s behavior “Correctness” based on risk estimate ordering

CBT( f o, f u) =
 # patients both models label correctly 

 # patients original model labels correctly 



Rank-based compatibility CR

Agreement of risk estimate rankings produced by original & updated 
models given original ranked correctly:
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Rank-based compatibility CR

Agreement of risk estimate rankings produced by original & updated 
models given original ranked correctly:


 




1 → perfect compatibility, 0 → perfect incompatibility
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 is a new compatibility measure inspired by AUROCCR

Not threshold dependent.


Has a direct relationship with AUROC which we can use to assess trade-
offs.


Lower bound of  expected to increase as model performance 
increases.

CR
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Q1: Do we get  for free when we make updated 
models targeting AUROC?

CR

More specifically: do we observe  (or very close) when we train 
updated models using binary cross entropy loss?


Hypothesis: No, analytically we’d expect that  is centered at a region 
away from the upper and lower bounds.

CR = 1

CR
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Q1: Experimental Setup
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MIMIC-III Mortality Dataset

Alistair 2016, Bansal 2019, Tang 2020
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Q1: Experimental Setup
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Q1: Do we get  for free when we make updated 
models targeting AUROC?

CR

No.


We observe updated models have a limited range in .


Analytical results suggest that there’s a large search space .


Motivates techniques to search for updated models that have higher .

CR

CR
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Binary cross entropy loss:





Minimization of  leads to higher AUROC because risk estimates 
tend to align with labels.


No focus on compatibility between the updated and original model.


ℒBCE( f ) = − ∑
i∈I0

log(1 − ̂pi) − ∑
j∈I1

log( ̂pj)

ℒBCE

Risk stratification models are usually trained with 
binary cross entropy loss.
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Risk stratification models are usually trained with 
binary cross entropy loss.
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We introduce rank-based incompatibility loss.

Rank-based incompatibility loss: 




Minimization of  will lead to higher levels of .


Differentiable approximation  for SGD.

ℒR( f o, f u) = 1 − CR( f o, f u)

ℒR CR

ℒ̃R
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Weighted loss trades-off between binary cross 
entropy and compatibility.

Weighted loss function: 

 


where 


When:


 then only minimize  , ↑ AUROC


 then only minimize  , ↑ 


 then balance  and 

αℒBCE( f u) + (1 − α)ℒ̃R( f o, f u)

α ∈ [0,1]

α = 1 ℒBCE

α = 0 ℒ̃R CR

α = 0.5 ℒBCE ℒ̃R
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Q2: Can we make updated models with higher levels of 
?CR

Specifically: Compared to standard update model generation and 
selection approaches, can we use the weighted loss function to generate 
updates with better ?


Hypothesis: using weighted loss function will produce models with better 
.


Also, can this be accomplished without a loss of AUROC?

CR

CR
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Q2: Extends Previous Experimental Setup
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Q2: Updated Models Selection vs. Optimization
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f u f u f u

f u f u f u

… 150

Selection

…

Selection Optimization

150 “selection” models  
created through training with  

 and randomly resampling 
the development dataset

ℒBCE

11 “optimization” models  
created through training with  

weighted loss with  
α = {0,0.1,...,0.9,1}

f u

α = 0.5

f u

α = 0

... ... f u

α = 1



Q2: Updated Models Selection vs. Optimization
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f u f u f u

f u f u f u

…

Selection

…

Selection Optimization

Use a selection procedure to  
pick an updated model to use  

as a baseline 
 

For example model with best 
validation AUROC

Examine difference in  
held out evaluation 

 and AUROCCR

f u

α = 0.5

f u

α = 0

... ... f u

α = 1



Q2:  performance resultsCR
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Q2: α=0.6 yields promising updated models 
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Summary of experiments
Do we get  for free when we make updated models targeting AUROC?


No.


Can we make updated models with higher levels of ?


Yes, using our weighted loss function.


Does that come at a cost in terms of AUROC?


Sort of… 

CR

CR
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difference induced 

by compatibility

Affects physician users. 
Impacts patient lives.
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We should optimize  
for good team  
performance.



 is a new compatibility measure inspired by AUROCCR

Not threshold dependent: ↑ clinical utility


Has direct relationship with AUROC


Can balance AUROC and  


Using  → ↑  &  ↑AUROC


Real-world model updating case-study

CR

ℒ̃R CR

eotles@umich.edu

@eotles

mailto:eotles@umich.edu


My work enables model developers to find these 
desirable updated risk stratification models.

Updated models may be assessed with our new rank-based compatibility 
measure.


Model developers may use our weighted loss function to create model 
updates with improved .


Additionally, we present a real-world model updating case-study.

CR
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The ML Lifecycle
RTW Prediction

Assess value of  
longitudinal observations 


for return to work prediction
Ötleş et al., JAMIA ‘22

Performance Gap
Characterize changes 

to prospective performance 
after model implementation

Ötleş et al., MLHC ‘21

Updating Models
Develop rank-based compatibility  
measurement & optimization  
approaches for model updating
Ötleş et al., MLHC '23

Data 
Prep

Task 
Selection

Data 
Access

Model 
Training

Model 
Validation

Technical 
Integration

Prospective 
ValidationMonitoring

Updating

Workflow 
Integration
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Other projects
Data 
Prep

Task 
Selection

Data 
Access

Model 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Model 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Technical 
Integration

Prospective 
ValidationMonitoring

Updating

Workflow 
Integration

103

Development and validation of  
models to predict pathological  

outcomes of radical prostatectomy  
in regional and national cohorts 

Ötleş et al., 2022

Early identification of patients  
admitted to hospital for covid-19 
 at risk of clinical deterioration:  

model development and multisite  
external validation study 

Kamran et al., 2022

Evaluating a widely implemented  
proprietary deterioration index model 


among hospitalized patients with  
COVID-19 

Singh et al., 2021

External validation of a widely  
implemented proprietary sepsis  

prediction model in hospitalized patients

Wong et al., 2022



Time plays a crucial role in the development and 
implementation of ML models used in healthcare.
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Future directions

Developing models less sensitive to infrastructure shifts


Updating


Personalized updating


Understanding user preferences for model updating


Updating models over time to ensure best team performance
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Thesis: by focusing on the longitudinal nature of 
healthcare, we can improve the performance of 
predictive models during development & implementation.
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