Machine Learning for Healthcare Lessons From Across The Healthcare ML Lifecycle

WPI Business Week Erkin Ötleş October 2023

Time plays an important role in medicine.

Patient Level

Time (days)

Time plays an important role in medicine.

New:

Diagnostics

Healthcare System Level

Time (years)

Time complicates ML model development & implementation.

Time complicates ML model development & implementation.

Thesis: by focusing on the longitudinal nature of healthcare, we can improve the performance of predictive models during development & implementation.

Development

Data Access

Task Selection

Updating

Monitoring

Implementation

Task Selection

Updating

Updating Models

Develop rank-based compatibility measurement & optimization approaches for model updating

Ötleş et al., MLHC '23

Monitoring

RTW Prediction

Assess value of longitudinal observations for return to work prediction

Ötleş *et al.*, JAMIA '22

Performance Gap

Characterize changes to prospective performance after model implementation

Task Selection

Updating

Updating Models

Develop rank-based compatibility measurement & optimization approaches for model updating

Ötleş et al., MLHC '23

Monitoring

RTW Prediction

Assess value of longitudinal observations for return to work prediction

Ötleş *et al.*, JAMIA '22

Performance Gap

Characterize changes to prospective performance after model implementation

Task Selection

Updating

Updating Models

Develop rank-based compatibility measurement & optimization approaches for model updating

Ötleş et al., MLHC '23

Monitoring

RTW Prediction

Assess value of longitudinal observations for return to work prediction

Ötleş *et al.*, JAMIA '22

Performance Gap

Characterize changes to prospective performance after model implementation

Task Selection

Updating

Updating Models

Develop rank-based compatibility measurement & optimization approaches for model updating

Ötleş *et al.*, MLHC '23

Monitoring

RTW Prediction

Assess value of longitudinal observations for return to work prediction

Ötleş *et al.*, JAMIA '22

Performance Gap

Characterize changes to prospective performance after model implementation

What are we going to talk about?

Task Selection

Updating

Updating Models

Develop rank-based compatibility measurement & optimization approaches for model updating

Ötleş et al., MLHC '23

Monitoring

Let's cive in

Task Selection

Updating

Updating Models

Develop rank-based compatibility measurement & optimization approaches for model updating

Ötleş et al., MLHC '23

Monitoring

Existing return to work models ignore longitudinal observations.

55 y.o. male postal worker

Gaspar 2017, MCG 2022, MDG 2022

return to work prediction?

More specifically: when predicting future work-status do we observe a performance improvement when using longitudinal observations collected beyond the time of injury?

Hypothesis: Yes. Longitudinal observations improve predictions in other healthcare task.

Q: What is the value of longitudinal observations in

Experimental Setup

Worker's Compensation Claims Data

Aspirin Aspirin Flexeril ... Flexeril Prescriptions

Ötleş, Seymour, Wang, Denton. Dynamic prediction of work status for workers with occupational injuries: assessing the value of longitudinal observations. Journal of the American Medical Informatics Association. 2022 [In Press]

Probability of being at work next week **Baseline** 0.59 Proposed 0.75

Ötleş, Seymour, Wang, Denton. Dynamic prediction of work status for workers with occupational injuries: assessing the value of longitudinal observations. *Journal of the American Medical Informatics Association.* 2022 [In Press]

Ötleş, Seymour, Wang, Denton. Dynamic prediction of work status for workers with occupational injuries: assessing the value of longitudinal observations. *Journal of the American Medical Informatics Association.* 2022 [In Press]

Ötleş, Seymour, Wang, Denton. Dynamic prediction of work status for workers with occupational injuries: assessing the value of longitudinal observations. *Journal of the American Medical Informatics Association.* 2022 [In Press]

Main Takeaway from RTW Prediction.

Return to work prediction benefits from longitudinal observations.

On to the next one.

Data Access

Task Selection

Updating

Updating Models

Develop rank-based compatibility measurement & optimization approaches for model updating

Ötleş et al., MLHC '23

Monitoring

RTW Prediction

Assess value of longitudinal observations for return to work prediction

Ötleş *et al.*, JAMIA '22

Performance Gap

Characterize changes to prospective performance after model implementation

Model performance may degrade after implementation.

2019

Time

This degradation is often attributed to changes in populations & practice that occurs over time.

2019

Time

However, changes in IT infrastructure may also affect the prospective performance gap.

2019

Time

Degradation due to temporal & infrastructure shift.

2019

Time

Q: What are the causes of the prospective performance gap?

More specifically: what are the temporal and infrastructure shift contributions to the prospective performance gap of a prospectively implemented model?

Hypothesis: Infrastructure will be an important component of the prospective performance gap.

Performance Gap: 0.011

Performance Gap: 0.011 Temporal Shift: -0.005

Ötleş, Oh, Li, Bochinski, Joo, Ortwine, Shenoy, Washer, Young, Rao, Wiens. Mind the performance gap: examining dataset shift during prospective validation. *Machine Learning for Healthcare Conference.* 2021.

Performance Gap: 0.011 Temporal Shift: -0.005 Infrastructure Shift: 0.016

Infrastructure Matters.

infrastructure shift:

what you access

recognized!

Observed prospective performance gap primarily driven by

- source & processing differ, requires infrastructure updates
- timing of access differs, when you access the data affects

Infrastructure shift can be mitigated, but first it must be

Last but not least.

Data Access

Task Selection

Updating

Updating Models

Develop rank-based compatibility measurement & optimization approaches for model updating

Ötleş *et al.*, MLHC '23

Monitoring

RTW Prediction

Assess value of longitudinal observations for return to work prediction

Ötleş *et al.*, JAMIA '22

Performance Gap

Characterize changes to prospective performance after model implementation

Physicians and models function as a team in healthcare settings.

Physicians and models function as a team in healthcare settings.

Physicians and models function as a team in healthcare settings.

Physicians and models function as a team in healthcare settings.

Counter performance degradation

Performance

Time

Finlayson 2021, David 2017, Hickey 2012, Minne 2012, Bansal 2019

Counter performance degradation

Adapt to infrastructure changes

Time

Counter performance degradation

Adapt to infrastructure changes

Time

Incorporate new data

Time

Updates can mess with user expectations.

Updates can mess with user expectations.

fnew

Team performance may suffer if models don't meet user expectations.

Ferformance

Model Updated

Time

Ideally updated models meet the expectations of users

Performance

Team

Compatibility: the amount an updated model continues the correct behavior of an original model

Way to measure user expectations

Goal: updated models should have high compatibility

🗸 Compatible 🗸 X Incompatible X Time

Bansal 2019

Bansal 2019

Bansal 2019

Updated

Bansal 2019

Backwards Trust Compatibility C^{BT}

original model's labels were correct.

 $C^{BT}(f^o, f^u) = -$ # patients both models label correctly

- The chance that the updated model's labels are correct, given that the

 - # patients original model labels correctly

Backwards Trust Compatibility C^{BT}

The chance that the updated model's labels are correct, given that the original model's labels were correct.

patients both models label correctly

patients original model labels correctly

Backwards Trust Compatibility C^{BT}

The chance that the updated model's labels are correct, given that the original model's labels were correct.

Backwards Trust Compatibility C^{BT}

original model's labels were correct.

 $C^{BT}(f^o, f^u) = -$ # patients both models label correctly

- The chance that the updated model's labels are correct, given that the

 $1 \rightarrow \text{perfect compatibility}, 0 \rightarrow \text{perfect incompatibility}$

Existing measure depends on equality comparison

Problematic for use in risk stratification model & healthcare settings

Depends on setting a single decision threshold

Existing measure depends on equality comparison

Problematic for use in risk stratification model & healthcare settings

Depends on setting a single decision threshold

Existing measure depends on equality comparison

Problematic for use in risk stratification model & healthcare settings

Depends on setting a single decision threshold

Dr. A Dr. B Dr. C

Existing measure depends on equality comparison

Problematic for use in risk stratification model & healthcare settings

Depends on setting a single decision threshold

Dr. A Dr. B Dr. C

Existing measure depends on equality comparison

Problematic for use in risk stratification model & healthcare settings

Depends on setting a single decision threshold

No direct relationship with AUROC

Dr. A Dr. B Dr. C

Our contributions

Define a new rank-based compatibility measure (C^{R}) Characterize C^{R} and its relationship with AUROC

Custom loss function to engineer model updates with improved C^{R}

Intuition: C^R should inherit from both C^{BT} & AUROC

 $C^{BT}(f^o, f^u) = \frac{\text{\# patients both models label correctly}}{\text{\# patients original model labels correctly}}$

Evaluate correct behavior of both models Normalized based on original model's behavior

 $AUROC(f^{o}) = \frac{\sum_{i \in I^{0}} \sum_{j \in I^{1}} \mathbf{1}(\hat{p}_{i}^{o} < \hat{p}_{j}^{o})}{\sum_{i \in I^{0}} \sum_{j \in I^{1}} \mathbf{1}(\hat{p}_{i}^{o} < \hat{p}_{j}^{o})}$ M

"Correctness" based on risk estimate ordering

Agreement of risk estimate rankings produced by original & updated models given original ranked correctly:

 $\sum \mathbf{1}(\hat{p}_{i}^{o} < \hat{p}_{j}^{o}) \cdot \mathbf{1}(\hat{p}_{i}^{u} < \hat{p}_{j}^{u})$

Agreement of risk estimate rankings produced by original & updated models given original ranked correctly:

 $\sum \mathbf{1}(\hat{p}_{i}^{o} < \hat{p}_{j}^{o}) \cdot \mathbf{1}(\hat{p}_{i}^{u} < \hat{p}_{j}^{u})$

Agreement of risk estimate rankings produced by original & updated models given original ranked correctly:

original model ranks correctly

Agreement of risk estimate rankings produced by original & updated models given original ranked correctly:

Agreement of risk estimate rankings produced by original & updated models given original ranked correctly:

Agreement of risk estimate rankings produced by original & updated models given original ranked correctly:

$$C^{R}(f^{o}, f^{u}) = \frac{\sum_{i \in I^{0}} \sum_{j \in I^{1}} \mathbf{1}(\hat{p}_{i}^{o} + p_{i}^{o})}{\sum_{i \in I^{0}} \sum_{j \in I^{1}} \sum_{i \in I^{0}} \sum_{j \in I^{1}} p_{i}^{o}}$$

1 \rightarrow perfect compatibility, 0 \rightarrow perfect incompatibility

$\langle \hat{p}_j^o \rangle \cdot \mathbf{1}(\hat{p}_i^u < \hat{p}_j^u)$

 $\mathbf{1}(\hat{p}_{i}^{o} < \hat{p}_{i}^{o})$

C^R is a new compatibility measure inspired by AUROC

Not threshold dependent.

Has a direct relationship with AUF offs.

Lower bound of C^R expected to increase as model performance increases.

Has a direct relationship with AUROC which we can use to assess trade-

Q1: Do we get C^R for free when we make updated models targeting AUROC?

updated models using binary cross entropy loss?

Hypothesis: No, analytically we'd expect that C^R is centered at a region away from the upper and lower bounds.

More specifically: do we observe $C^R = 1$ (or very close) when we train

Original Model n = 1,000

Original Model Development n = 500

Original Model Validation n = 500

Updated Model Dataset n = 5,000

Updated Model Development n = 2,500

Updated Model Validation n = 2,500

Alistair 2016, Bansal 2019, Tang 2020

Evaluation Dataset n = 2,577

MIMIC-III Mortality Dataset

Original Model n = 1,000

Original Model Development n = 500

Original Model Validation n = 500

Updated Model Dataset n = 5,000

Updated Model Development n = 2,500

Updated Model Validation n = 2,500

Evaluation Dataset n = 2,577

Original Model n = 1,000

Original Model Development n = 500

Original Model Validation n = 500

Updated Model Validation n = 2,500

Updated Model Dataset n = 5,000

Updated Model Development n = 2,500

Evaluation Dataset n = 2,577

Original Model n = 1,000

Original Model Development n = 500

Original Model Validation n = 500

Updated Model Dataset n = 5,000

Updated Model Development n = 2,500

Updated Model Validation n = 2,500

Evaluation Dataset n = 2,577

Results

Results

Results

Q1: Do we get C^R for free when we make updated models targeting AUROC?

No.

We observe updated models have a limited range in C^{R} .

Analytical results suggest that there's a large search space.

- Motivates techniques to search for updated models that have higher C^R .

Risk stratification models are usually trained with binary cross entropy loss.

Binary cross entropy loss:

Minimization of \mathscr{L}^{BCE} leads to higher AUROC because risk estimates tend to align with labels.

$$\log(1 - \hat{p}_i) - \sum_{j \in I^1} \log(\hat{p}_j)$$

Risk stratification models are usually trained with binary cross entropy loss.

Binary cross entropy loss:

 $\mathscr{L}^{BCE}(f) = -\sum_{i \in I^0}^{1}$

Minimization of \mathscr{L}^{BCE} leads to higher AUROC because risk estimates tend to align with labels.

Make 0-labeled patients / have low risk estimates

$$\frac{\log(1-\hat{p}_i)}{j \in I^1} - \sum_{j \in I^1} \log(\hat{p}_j)$$

Risk stratification models are usually trained with binary cross entropy loss.

Binary cross entropy loss:

Minimization of \mathscr{L}^{BCE} leads to higher AUROC because risk estimates tend to align with labels.

Risk stratification models are usually trained with binary cross entropy loss.

Binary cross entropy loss:

Minimization of \mathscr{L}^{BCE} leads to higher AUROC because risk estimates tend to align with labels.

No focus on compatibility between the updated and original model.

We introduce rank-based incompatibility loss.

Rank-based incompatibility loss:

Minimization of \mathscr{L}^R will lead to higher levels of C^R .

Differentiable approximation \mathscr{L}^{R} for SGD.

$\mathscr{L}^{R}(f^{o}, f^{u}) = 1 - C^{R}(f^{o}, f^{u})$

Weighted loss trades-off between binary cross entropy and compatibility.

Weighted loss function:

When:

 $\alpha = 1$ then only minimize \mathscr{L}^{BCE} , † AUROC

 $\alpha=0$ then only minimize $\widetilde{\mathscr{L}^R}$, † C^R

 $\alpha = 0.5$ then balance \mathscr{L}^{BCE} and $\widetilde{\mathscr{L}^{R}}$

 $\alpha \mathscr{L}^{BCE}(f^u) + (1 - \alpha) \widetilde{\mathscr{L}^R}(f^o, f^u)$

where $\alpha \in [0,1]$

Q2: Can we make updated models with higher levels of CR2

Specifically: Compared to standard update model generation and updates with better C^R ?

 C^{R}

Also, can this be accomplished without a loss of AUROC?

selection approaches, can we use the weighted loss function to generate

Hypothesis: using weighted loss function will produce models with better

Q2: Extends Previous Experimental Setup

Original Model n = 1,000

Original Model Development n = 500

Original Model Validation n = 500

Updated Model Dataset n = 5,000

Updated Model Development n = 2,500

Updated Model Validation n = 2,500

Evaluation Dataset n = 2,577

Q2: Updated Models Selection vs. Optimization

Selection

150 "selection" models created through training with \mathscr{L}^{BCE} and randomly resampling the development dataset

Optimization

11 "optimization" models created through training with weighted loss with $\alpha = \{0, 0.1, ..., 0.9, 1\}$

Q2: Updated Models Selection vs. Optimization

Selection

Use a selection procedure to pick an updated model to use as a baseline

For example model with best validation AUROC

Optimization

Examine difference in held out evaluation C^R and AUROC

Q2: C^R performance results

Q2: C^R performance results

Q2: AUROC performance results

Q2: AUROC performance results

Q2: Performance results

 $\beta = 0.6$

Q2: α=0.6 yields promising updated models

Summary of experiments

Do we get C^R for free when we make updated models targeting AUROC? No.

Can we make updated models with higher levels of C^R?
Yes, using our weighted loss function.
Does that come at a cost in terms of AUROC?
Sort of...

Team Performance

Team performance difference induced by compatibility

Time

Team Performance

Team performance difference induced by compatibility

Affects physician users. Impacts patient lives.

Time

Team Performance

Time

C^R is a new compatibility measure inspired by AUROC

Not threshold dependent: \uparrow clinical utility Has direct relationship with AUROC Can balance AUROC and C^R Using $\widetilde{\mathscr{L}^R} \to \uparrow C^R$ & \uparrow AUROC Real-world model updating case-study

> eotles@umich.edu @eotles

My work enables model developers to find these desirable updated risk stratification models.

Updated models may be assessed with our new rank-based compatibility measure.

Model developers may use our weighted loss function to create model updates with improved C^R .

Additionally, we present a real-world model updating case-study.

The ML Lifecycle

Task Selection

Updating

Updating Models

Develop rank-based compatibility measurement & optimization approaches for model updating

Ötleş et al., MLHC '23

Monitoring

RTW Prediction

Assess value of longitudinal observations for return to work prediction

Ötleş *et al.*, JAMIA '22

Performance Gap

Characterize changes to prospective performance after model implementation

Ötleş et al., MLHC '21

The ML Lifecycle

Task Selection

Updating

Updating Models

Develop rank-based compatibility measurement & optimization approaches for model updating

Ötleş et al., MLHC '23

Monitoring

RTW Prediction

Assess value of longitudinal observations for return to work prediction

Ötleş *et al.*, JAMIA '22

Performance Gap

Characterize changes to prospective performance after model implementation

Ötleş et al., MLHC '21

The ML Lifecycle

Task Selection

Updating

Updating Models

Develop rank-based compatibility measurement & optimization approaches for model updating

Ötleş *et al.*, MLHC '23

Monitoring

RTW Prediction

Assess value of longitudinal observations for return to work prediction

Ötleş *et al.*, JAMIA '22

Performance Gap

Characterize changes to prospective performance after model implementation

Ötleş et al., MLHC '21

Other projects

Development and validation of models to predict pathological outcomes of radical prostatectomy in regional and national cohorts Ötleş et al., 2022

Data Access

Task Selection

Updating

External validation of a widely implemented proprietary sepsis prediction model in hospitalized patients Wong et al., 2022

Monitoring

103

Future directions

Developing models less sensitive to infrastructure shifts Updating Personalized updating Understanding user preferences for model updating

Updating models over time to ensure best team performance

Thesis: by focusing on the longitudinal nature of healthcare, we can improve the performance of predictive models during development & implementation.