## Intro to Al for Medicine

**OUWB Medical Education Week** 



# Hello, World!

Medical Scientist Training Program Fellow

MD: 2024, Engineering PhD: 2022

ML Dev & Implementation Lead

**Emergency Medicine Resident** 

Previously:

Healthcare Data Science Manager

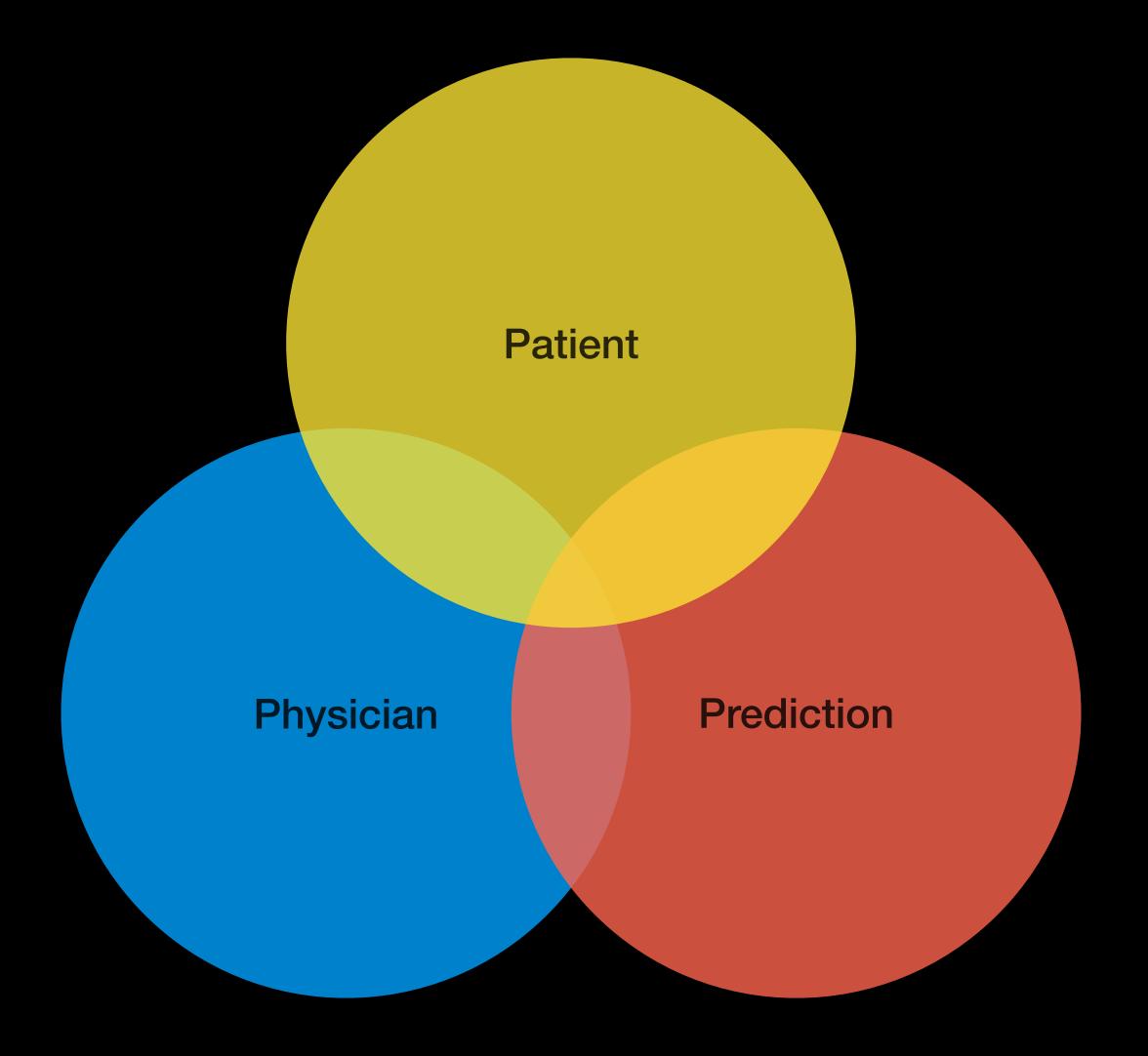
Epic Engineer



# Hello, World!

Dissertation: Machine Learning for Healthcare: Model Development and Implementation in Longitudinal Settings

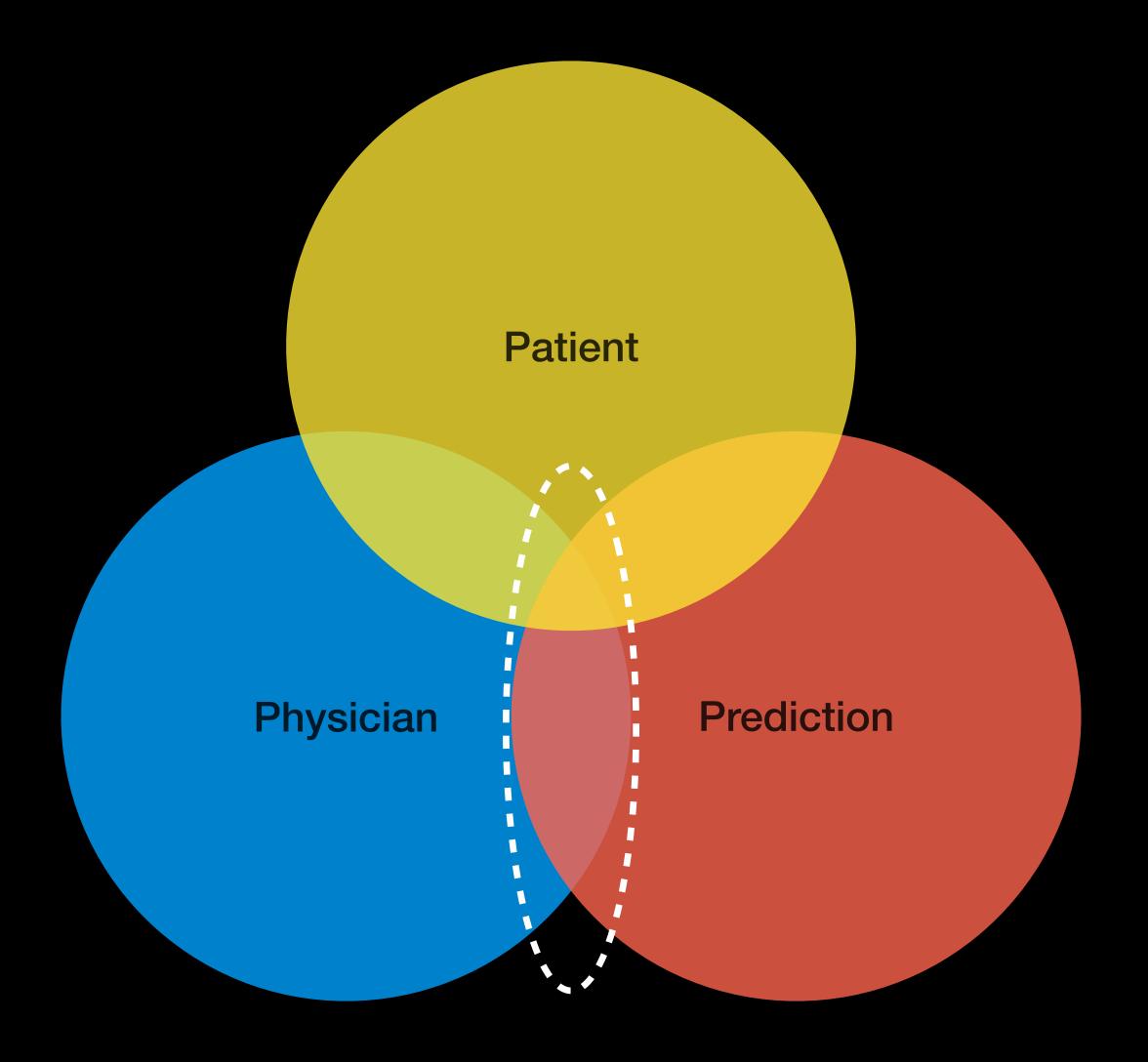
Co-advised: Jenna Wiens (CS) & Brian Denton (IOE)



# Hello, World!

Dissertation: Machine Learning for Healthcare: Model Development and Implementation in Longitudinal Settings

Interested in computational approaches to make AI tools more useful for physicians and patients.



## Potential Conflicts of Interest

Advise startups: utilize Al for problems in healthcare

Patent pending: Al prediction of health outcomes in patients with occupational injuries.

Small amount of stock in various technology & healthcare companies.

# Agenda

What is AI?

Definitions

What is a model?

Connections between generative & predictive Al

Clinical Al Examples & Learnings

Constant evaluation is fundamental

Upcoming Generative Clinical Al

Al Scribes

Discussion

# What is Al?

# What is Al?

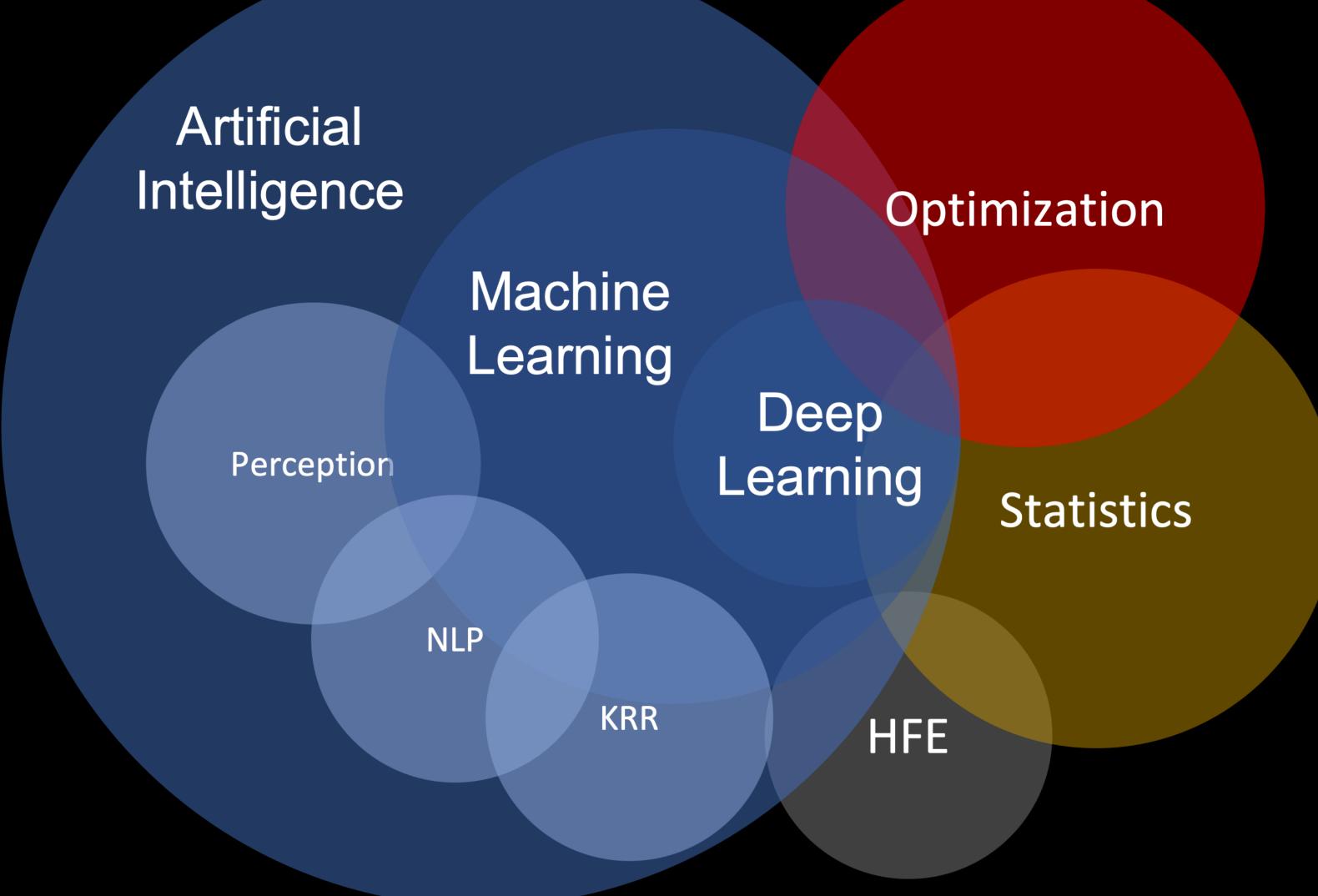
It is <u>not</u> magic.

# First, some definitions

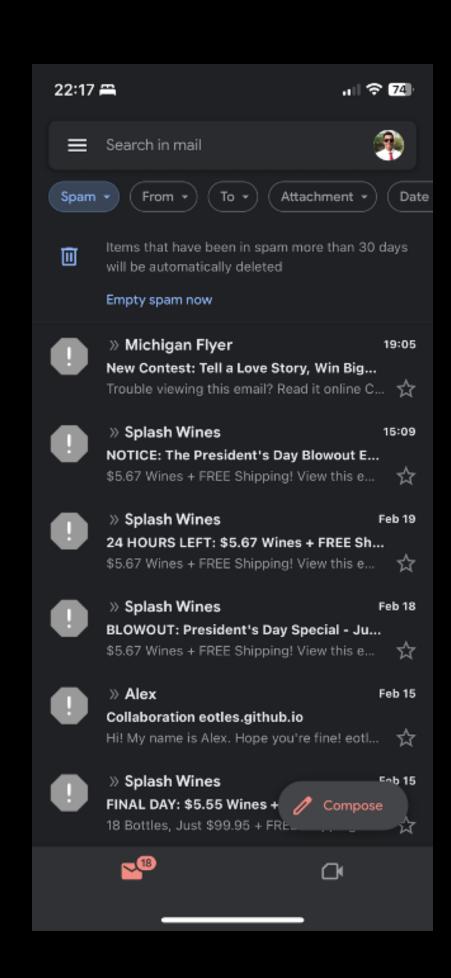
Artificial Intelligence (AI): intelligence (perceiving, synthesizing, and inferring information) demonstrated by machines

Machine Learning (ML): field of inquiry devoted to understanding and building methods that *learn* (use data to improve performance on a task).

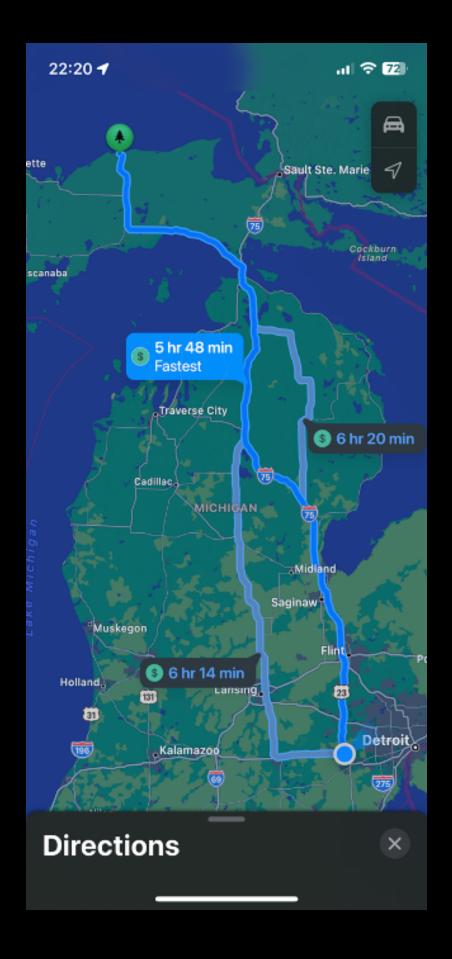
# Nesting and overlapping concepts



# Al is ubiquitous in everyday life







# Many industries depend on Al

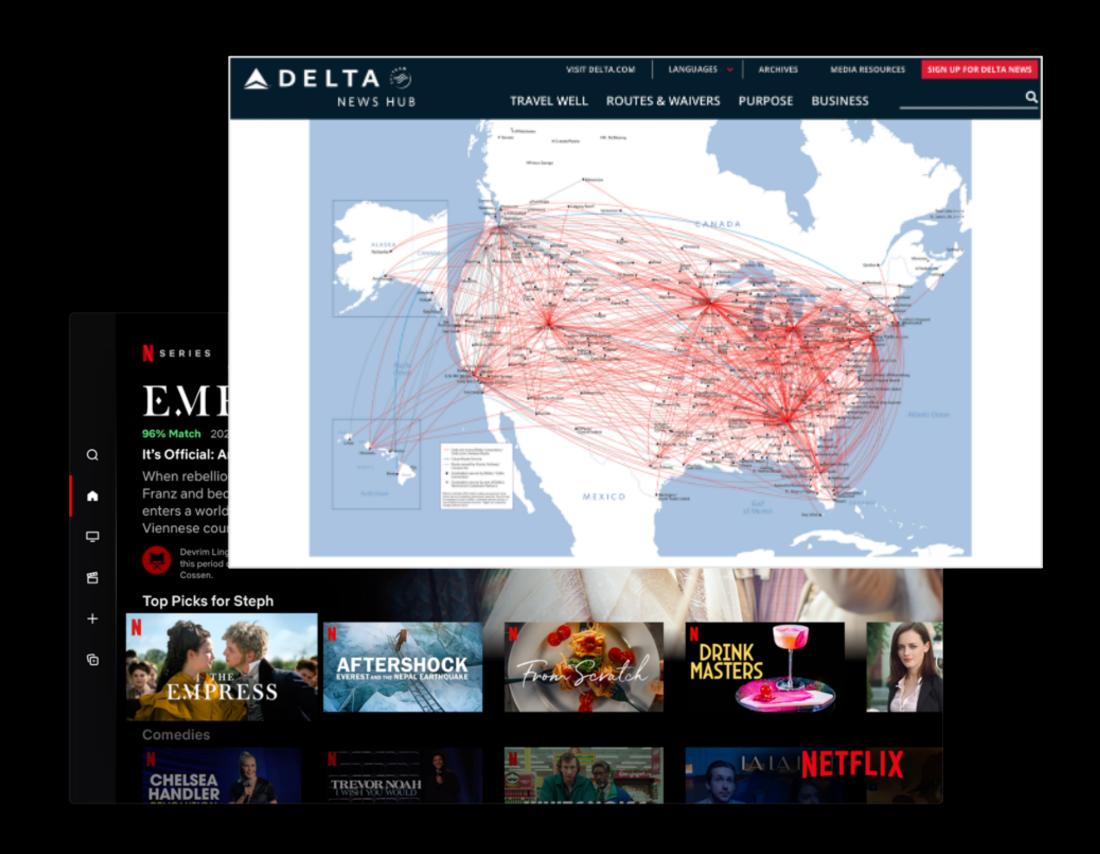
What routes should we fly?

When should we service our planes?

How should we price a product?

What content should we serve?

What products should we stock?



# What about Generative AI?

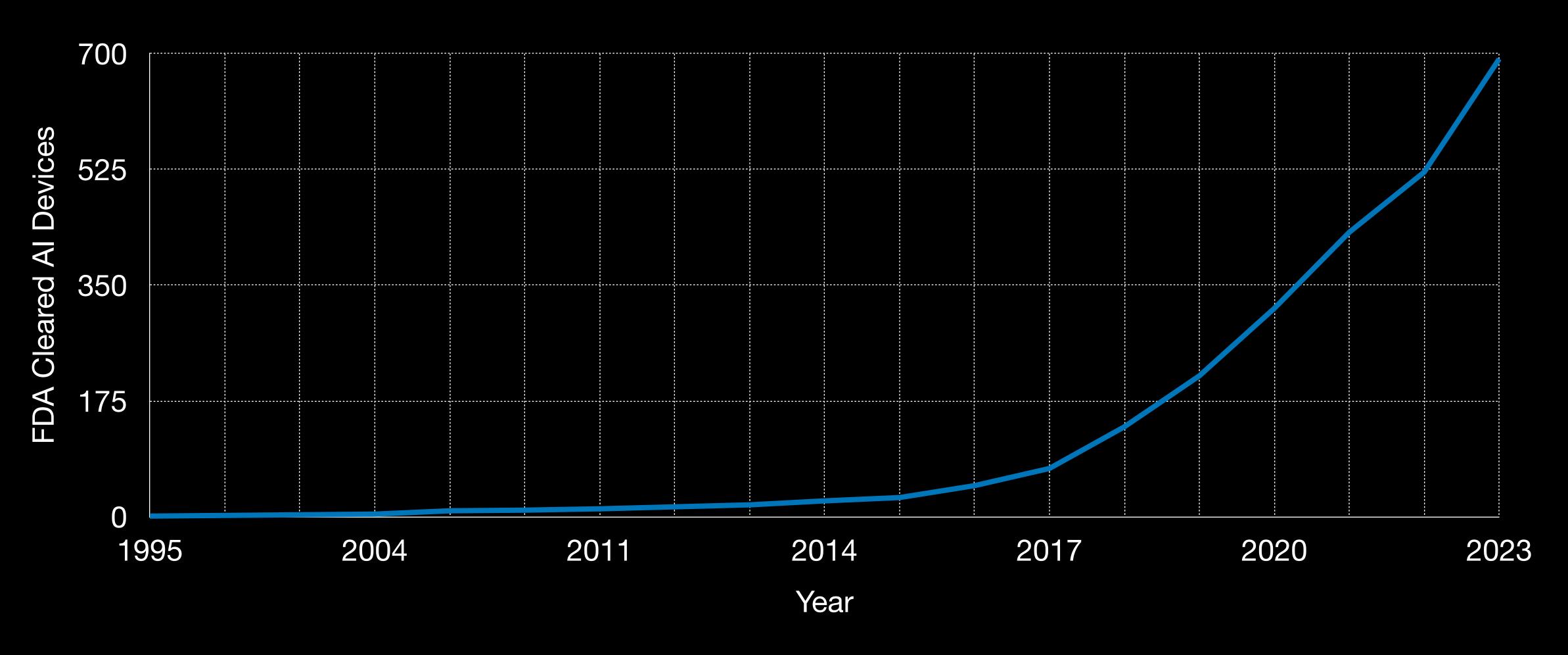
## Generative Al definitions

**Generative AI**: Al capable of *generating data* (text, images, etc.) using generative models, often in response to prompts.

Large Language Model (LLM): language model able to capable of general-purpose language generation and other language tasks.

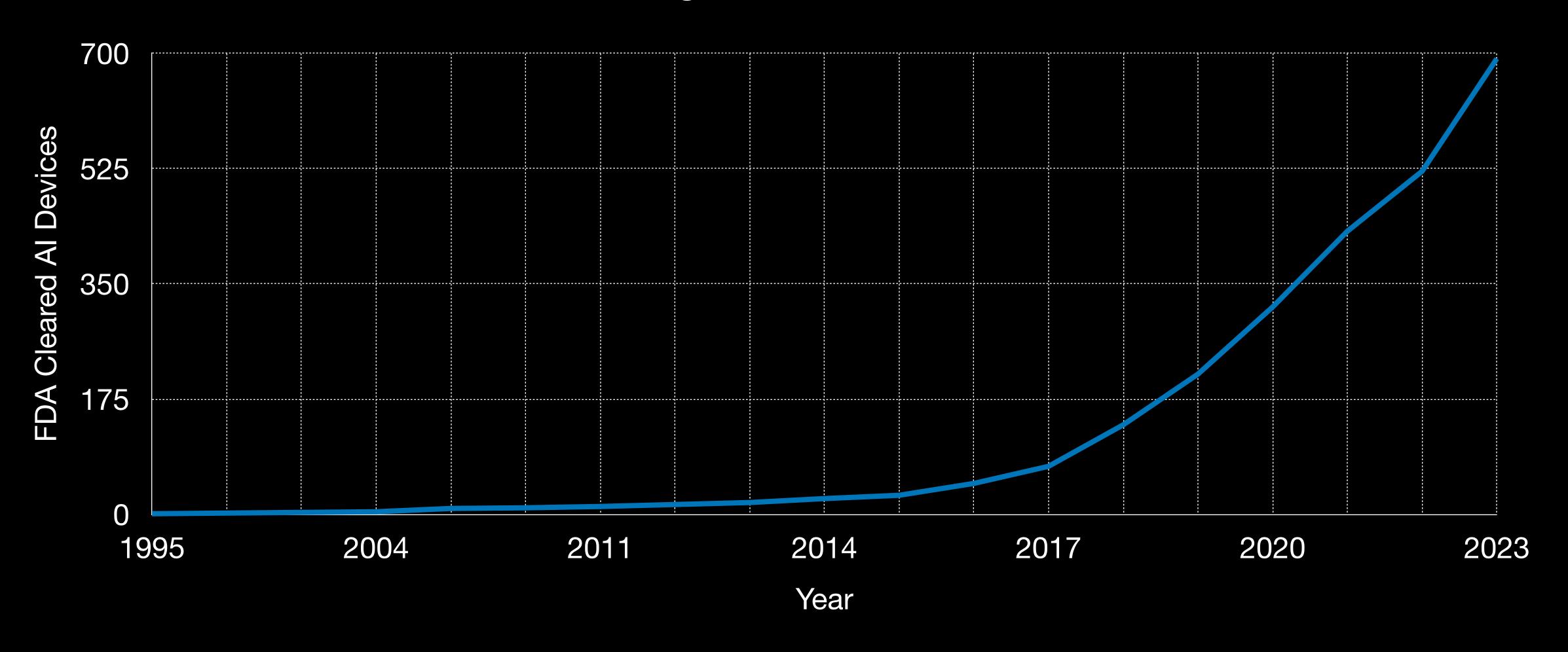
Foundation Model: a model that is trained on broad data such that it can be applied across a wide range of use cases.

## Increasing prevalence of medical Al



## Increasing prevalence of medical Al

no FDA cleared generative Al tools as of 2023



### Al has the potential to advance medicine



Al has techniques to rapidly **summarize** information, **predict** outcomes, and **learn** over time

Society has big expectations for AI in medicine

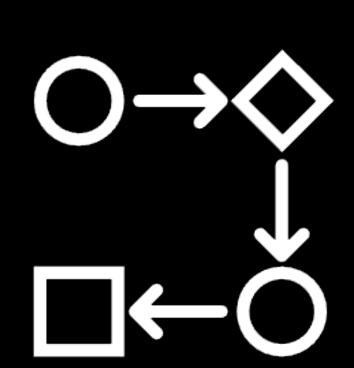
### Al not a typical part of medical education

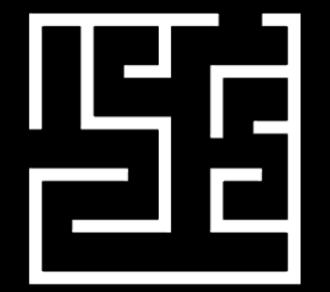
Use of AI in medicine is not straightforward

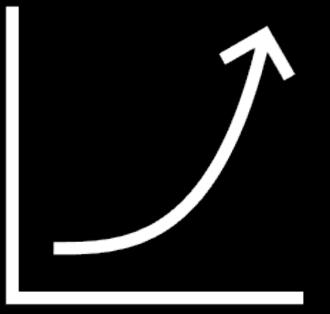
Al tools depend on complicated data and workflows that physicians understand

Medical Al adoption increasing

Learners unprepared to use, assess, and develop AI tools

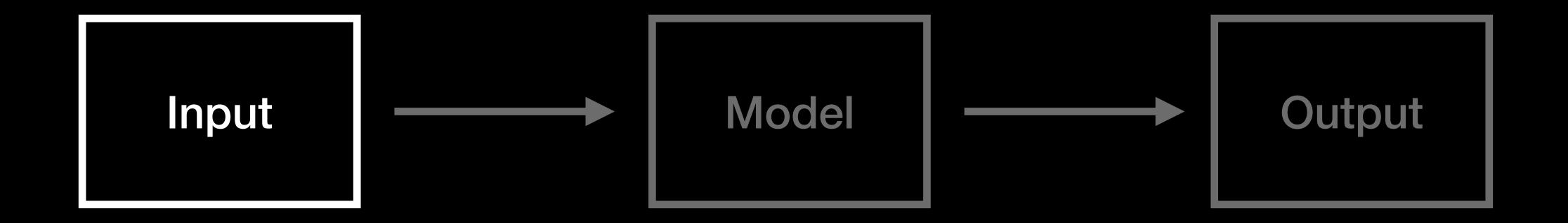


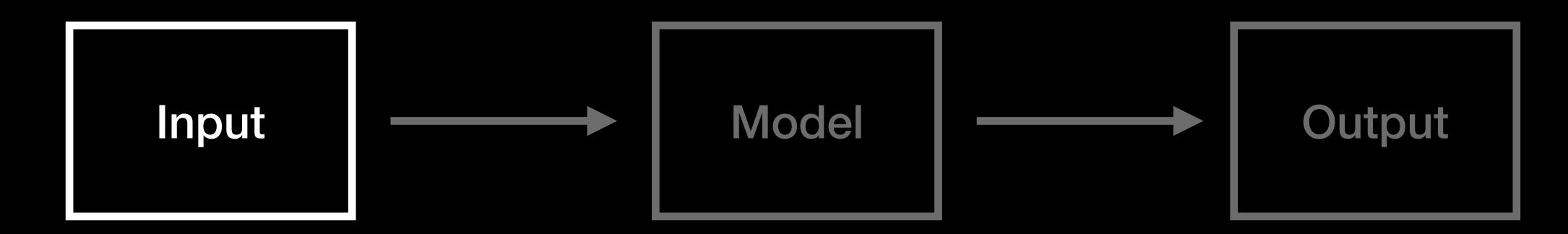




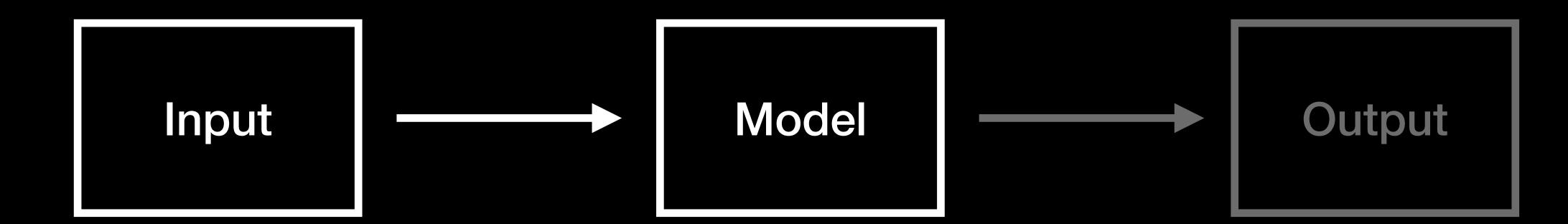
# What is a model?

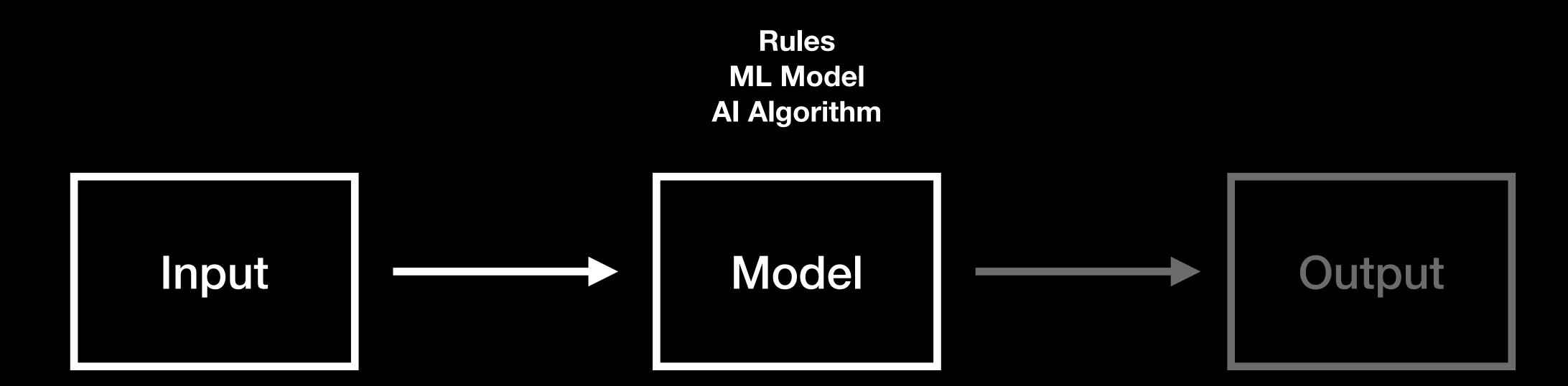


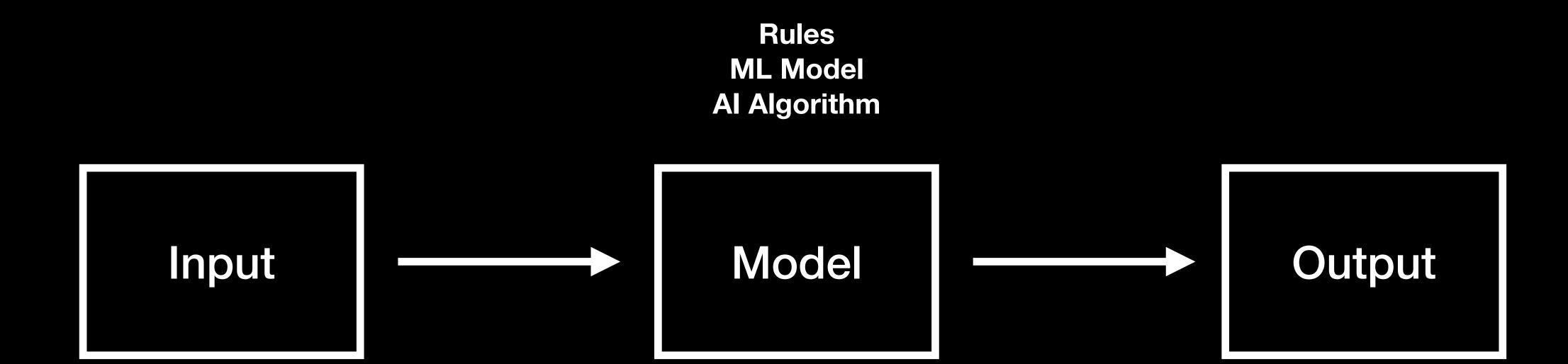


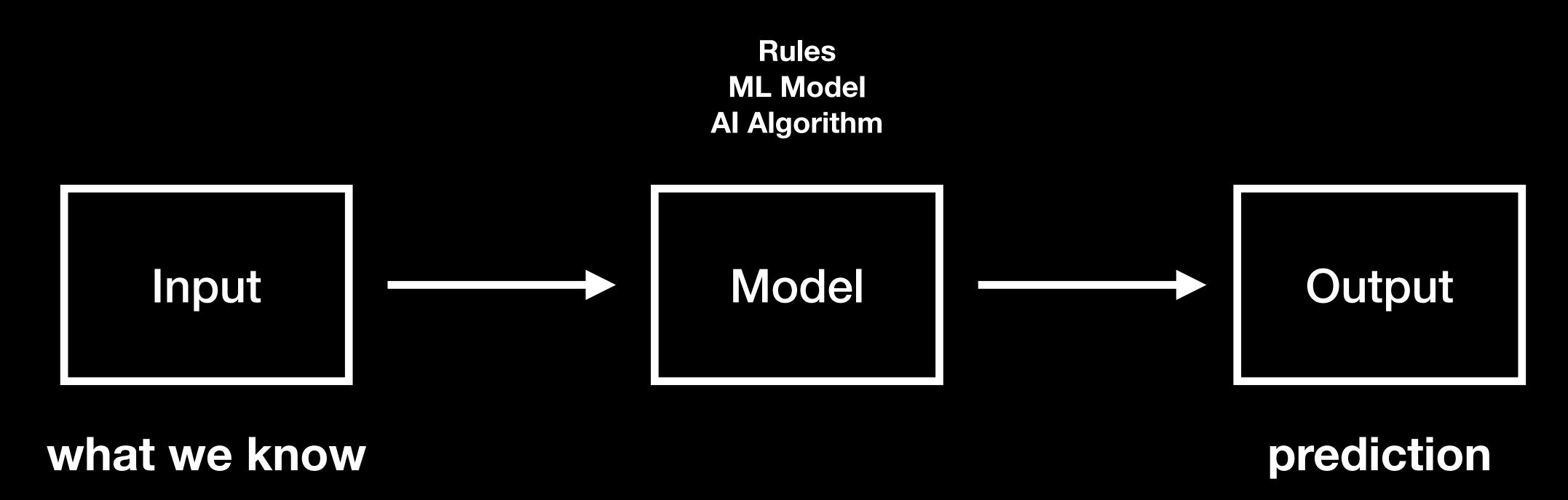


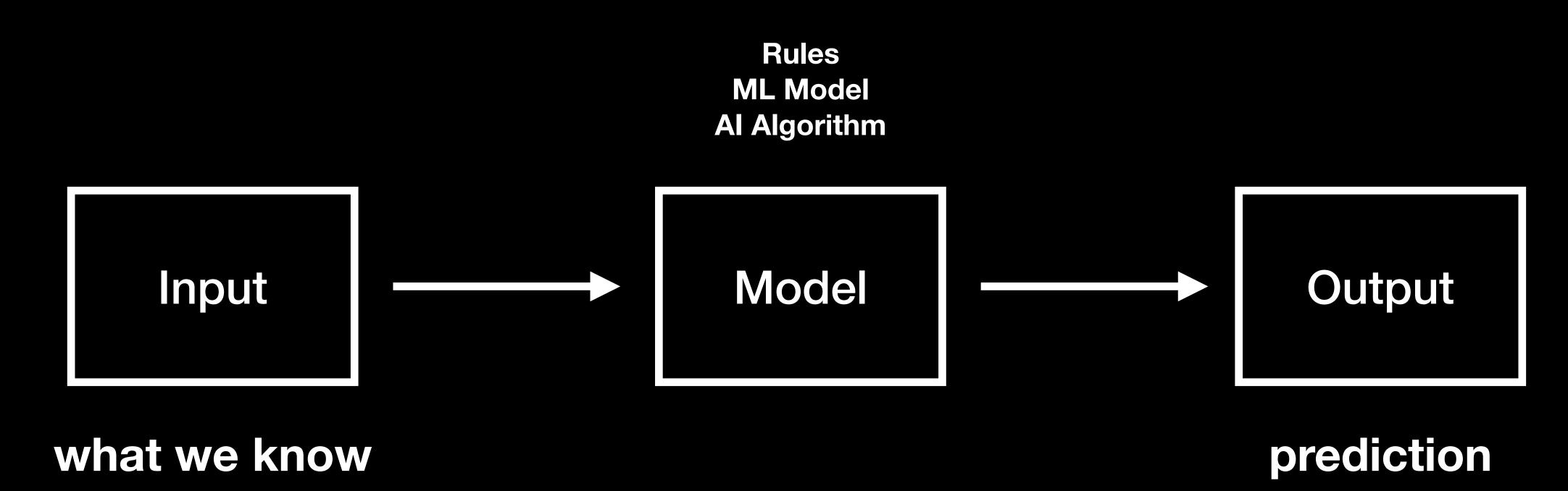








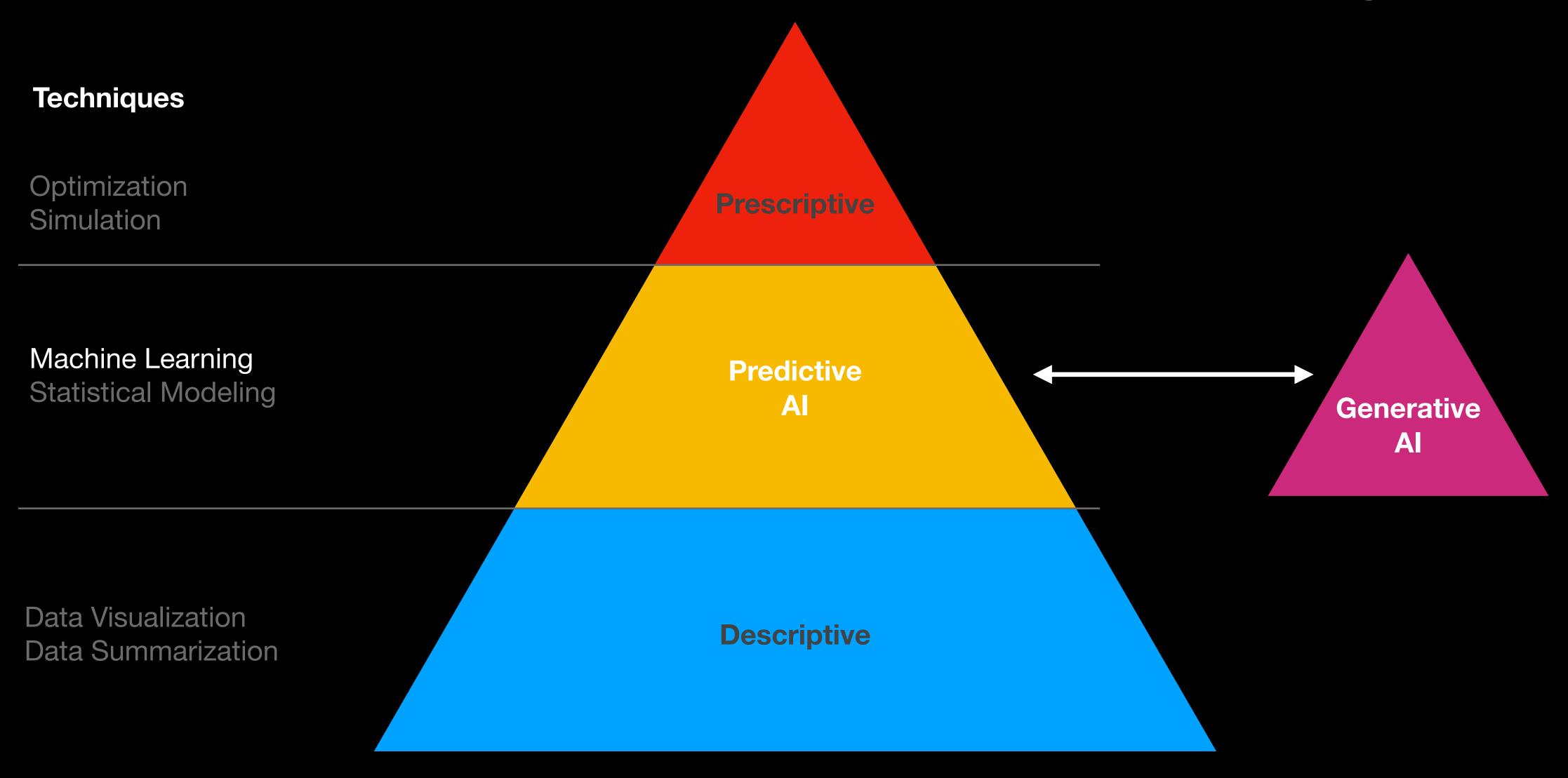




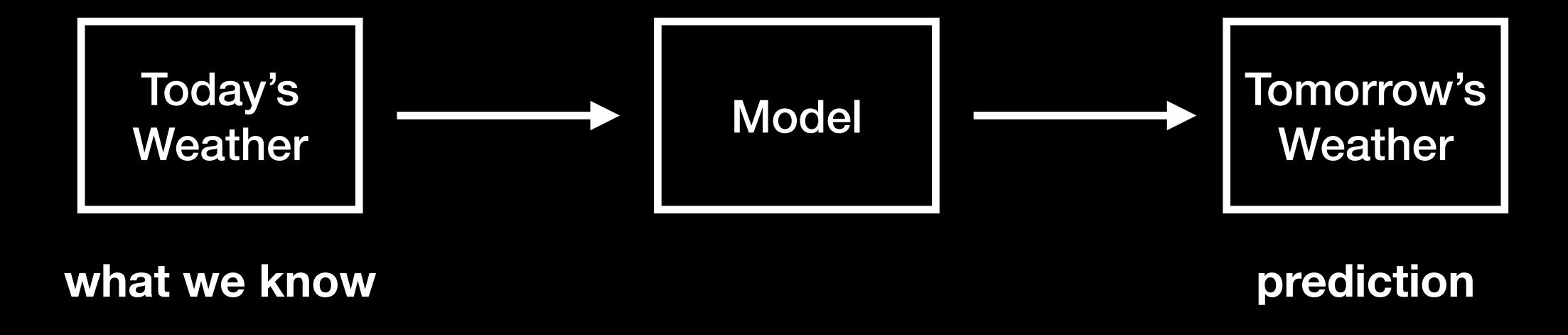
Age
Heart Rate
Comorbidities
Medications

Risk of Diabetes Length of Stay

## Connection between Al model types



## Will it rain tomorrow?

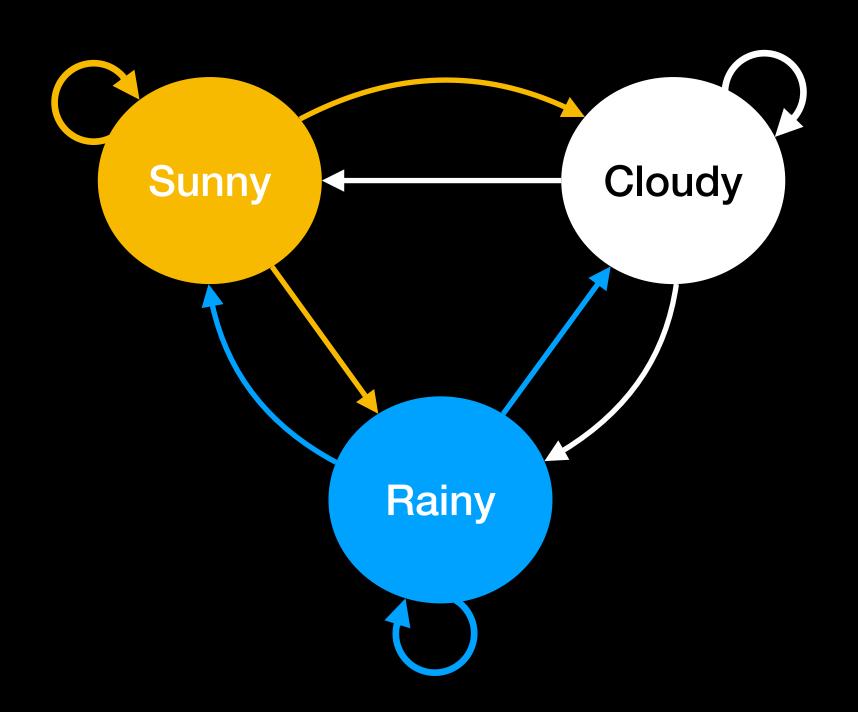


It is cloudy today.

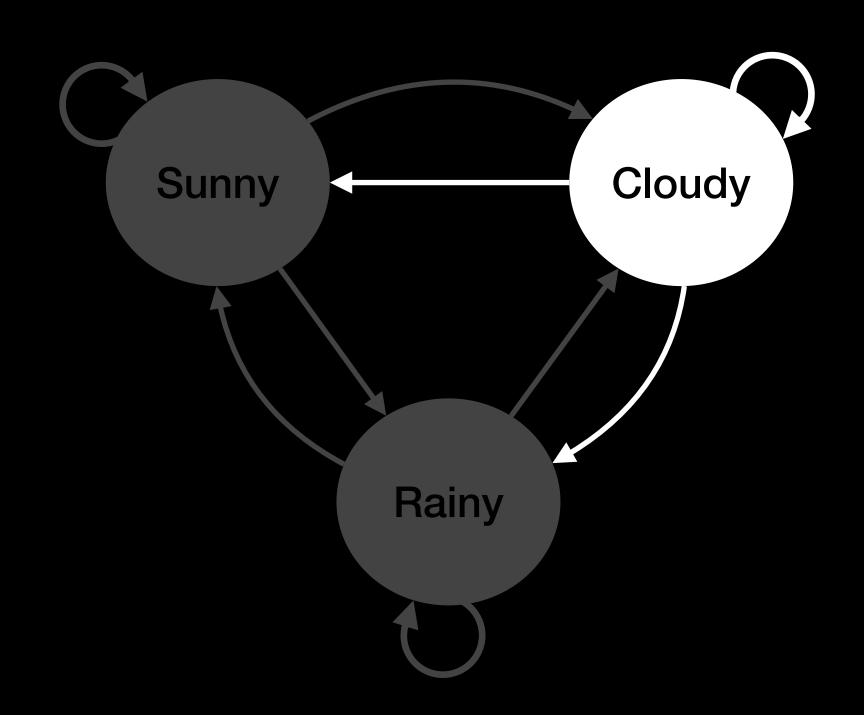
What's the probability it will rain tomorrow?

**Predictive** 

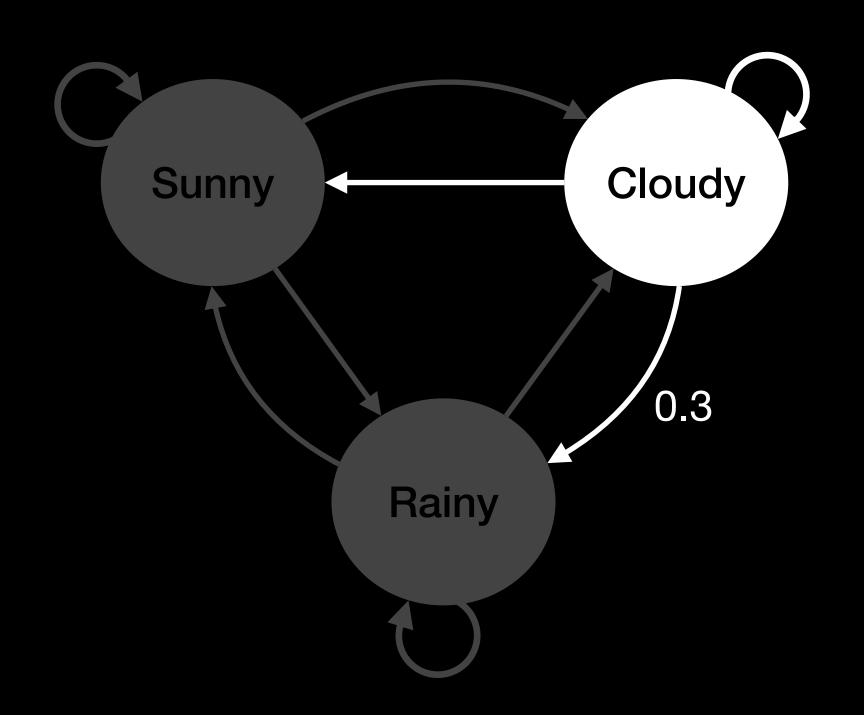
## Predictive use of a weather model



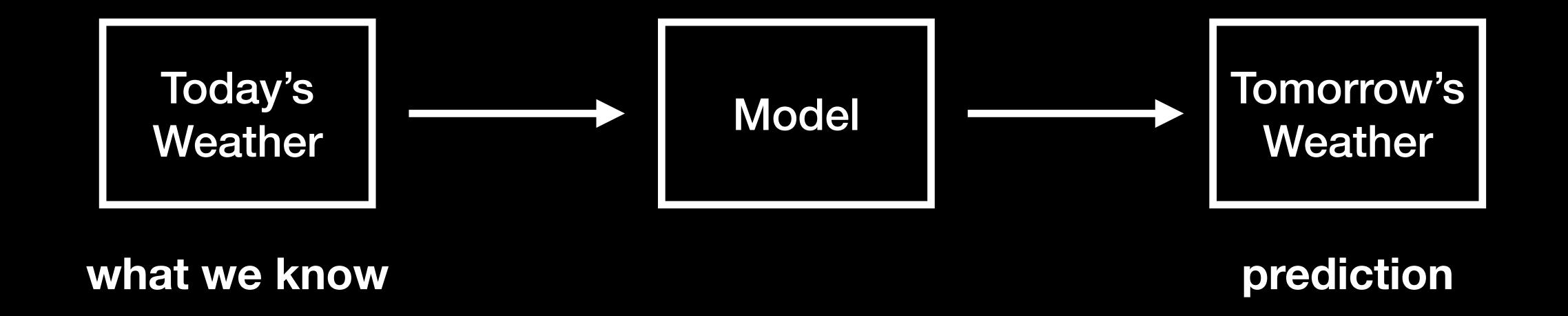
## Predictive use of a weather model



## Predictive use of a weather model

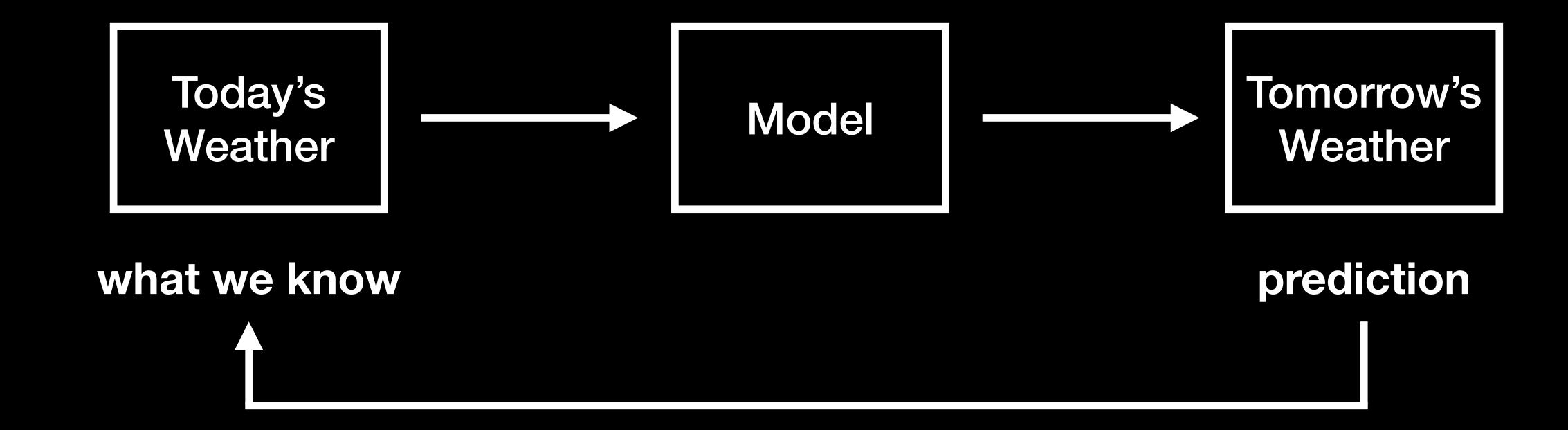


### What's the weather next week look like?



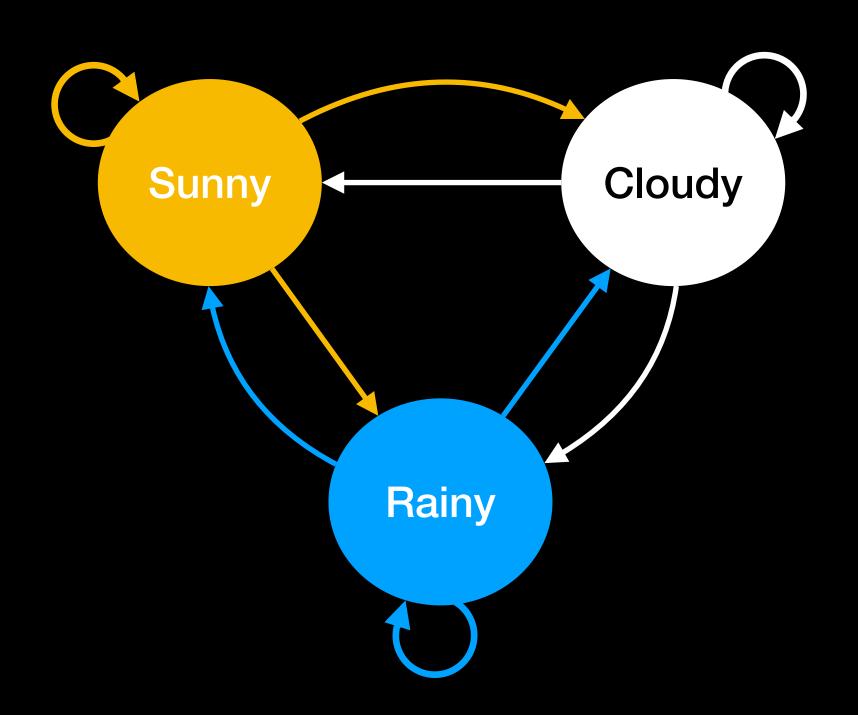
Generative

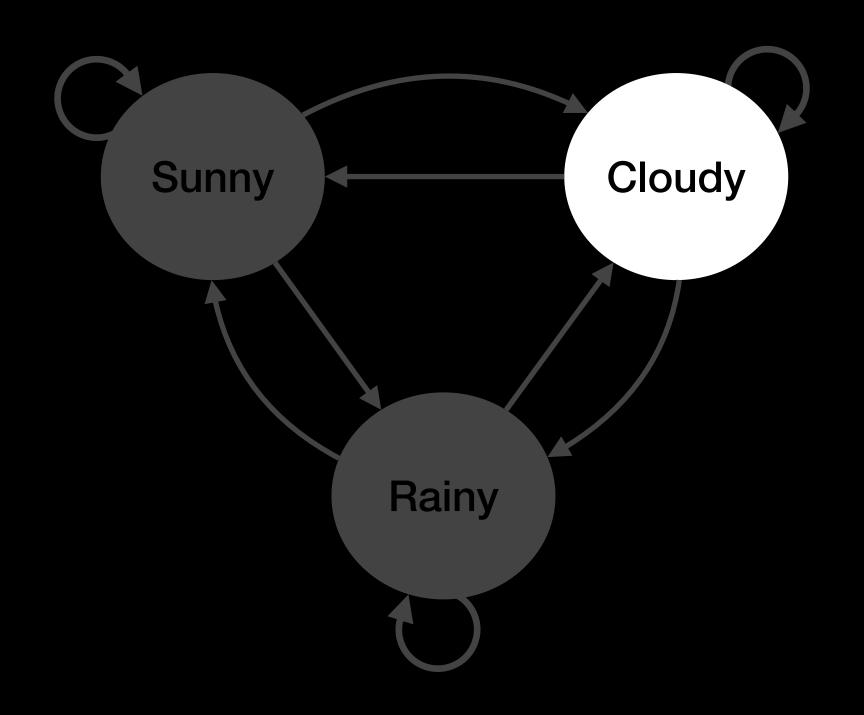
### What's the weather next week look like?

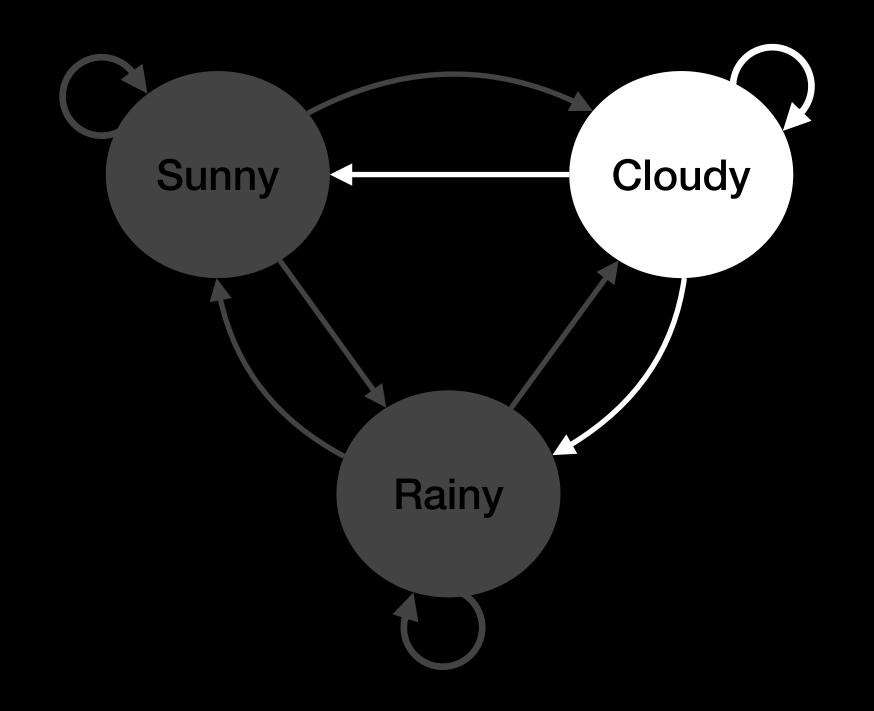


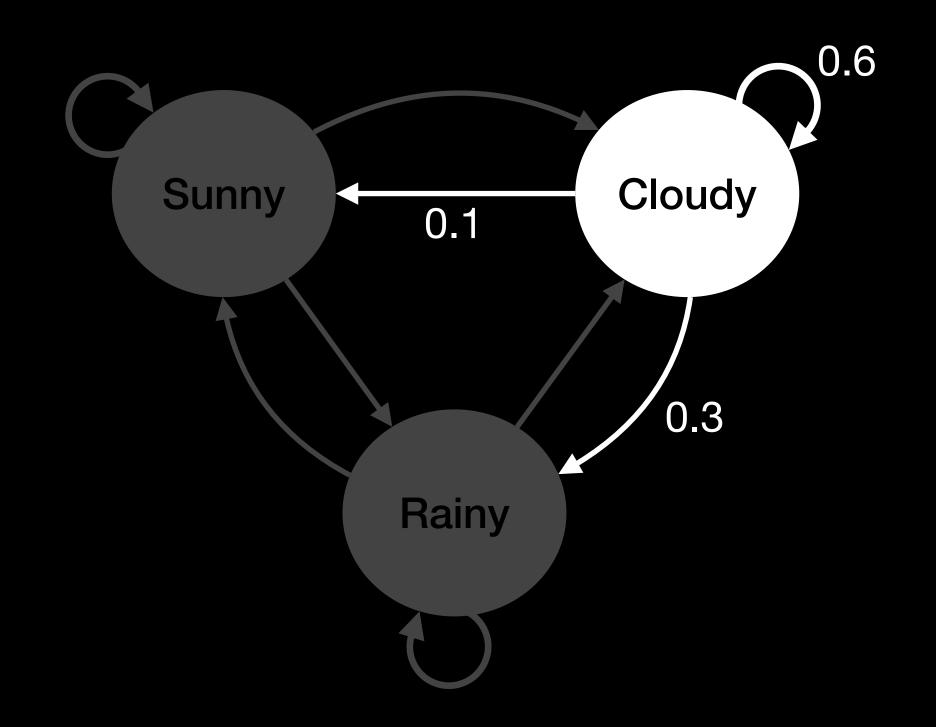
Generative

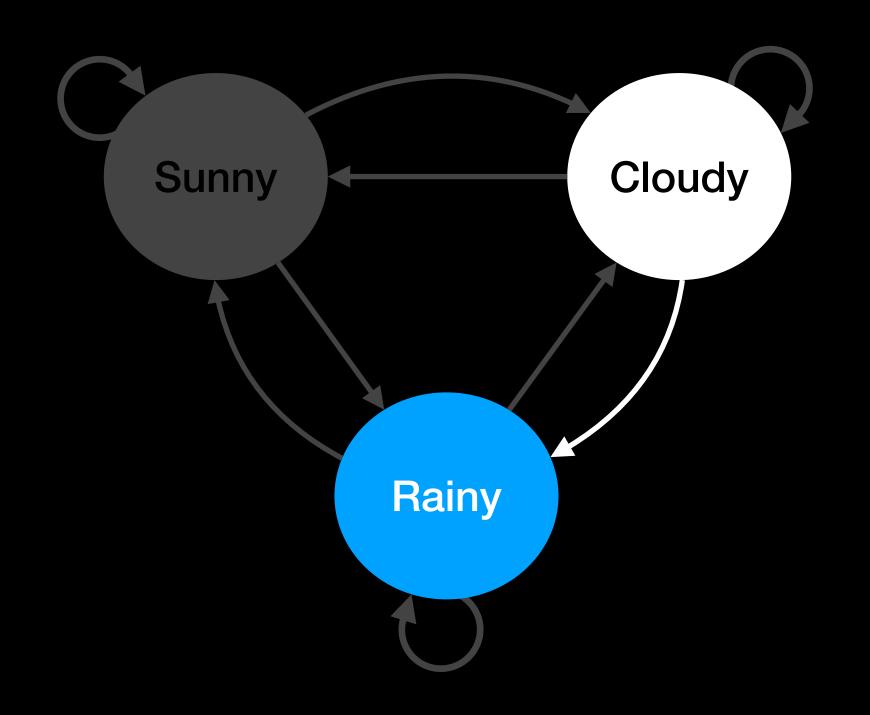
## Generative use of a weather model

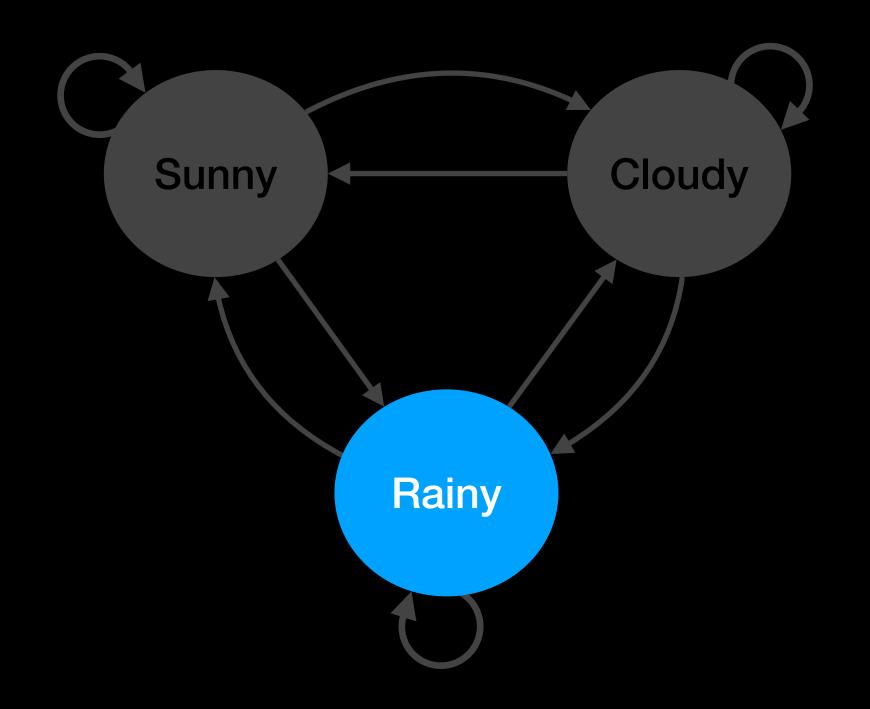




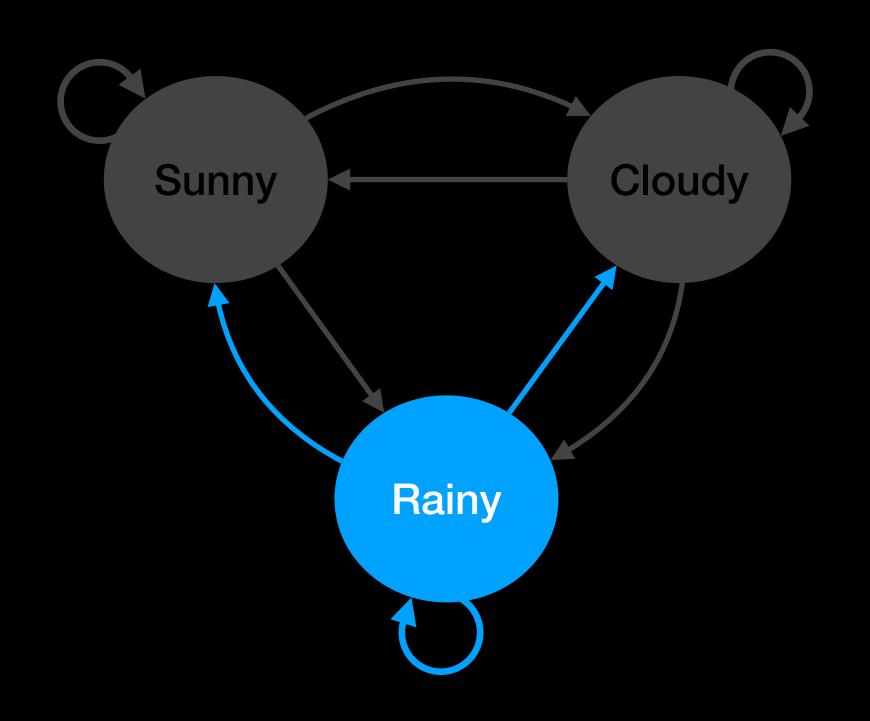




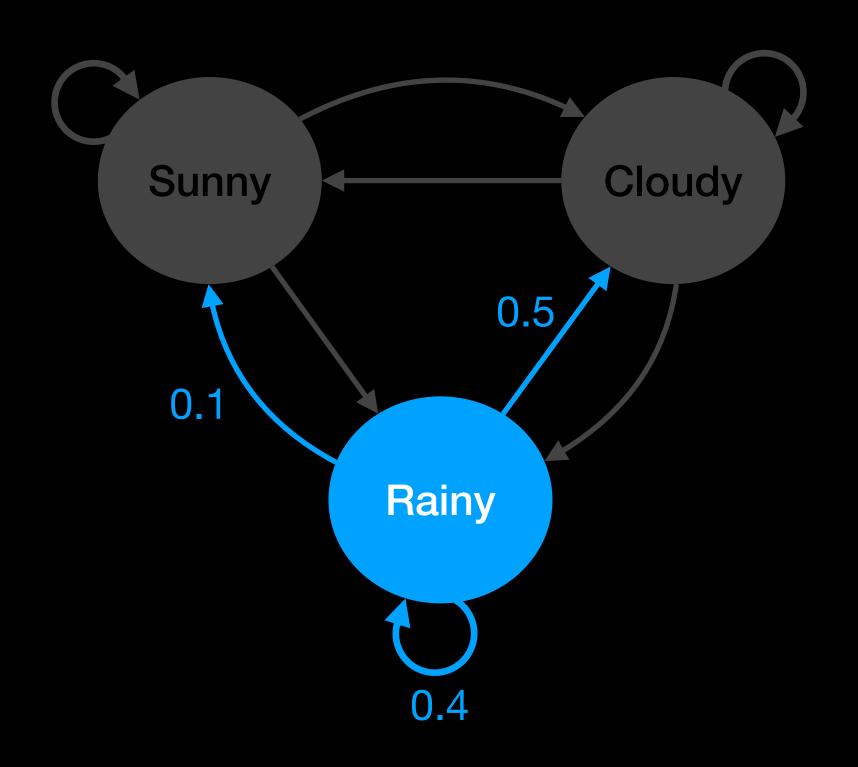




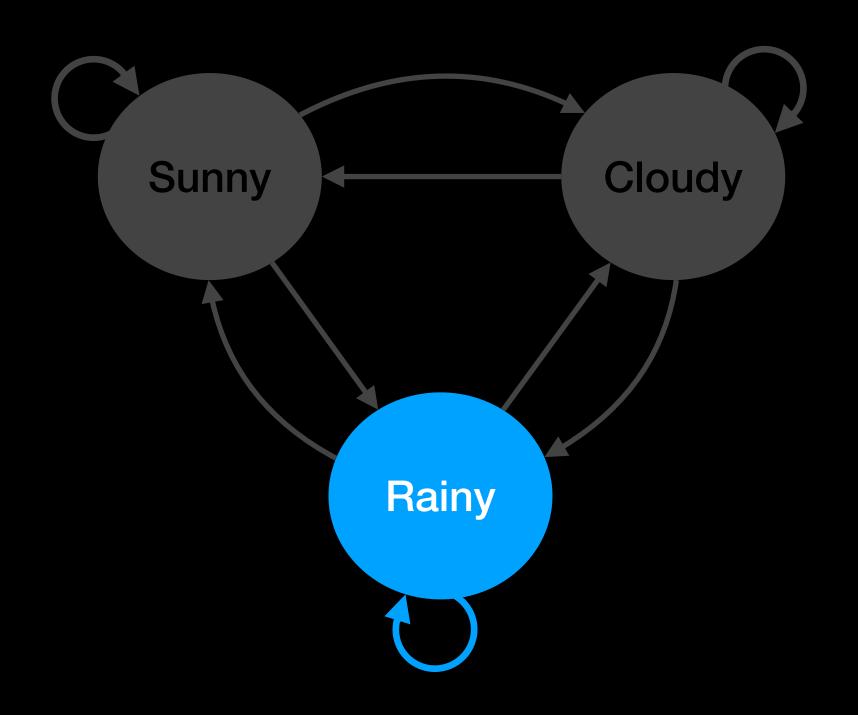
Cloudy, Rainy



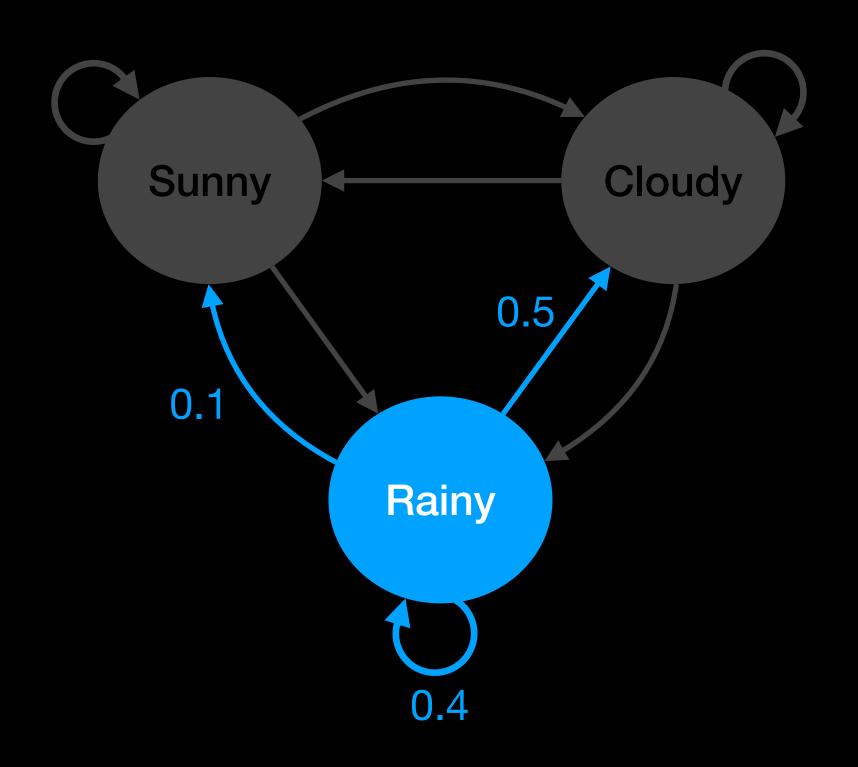
Cloudy, Rainy



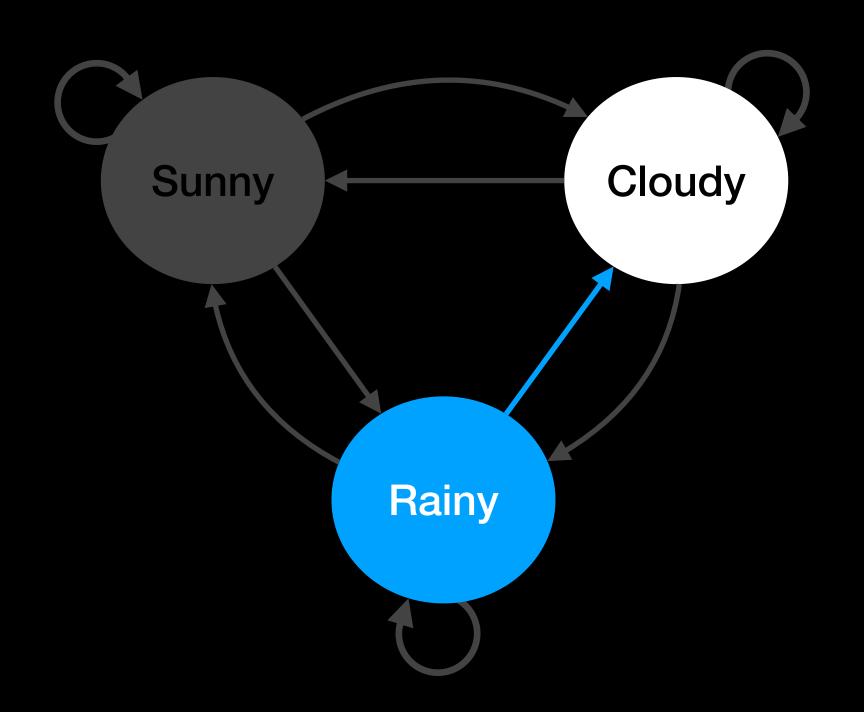
Cloudy, Rainy



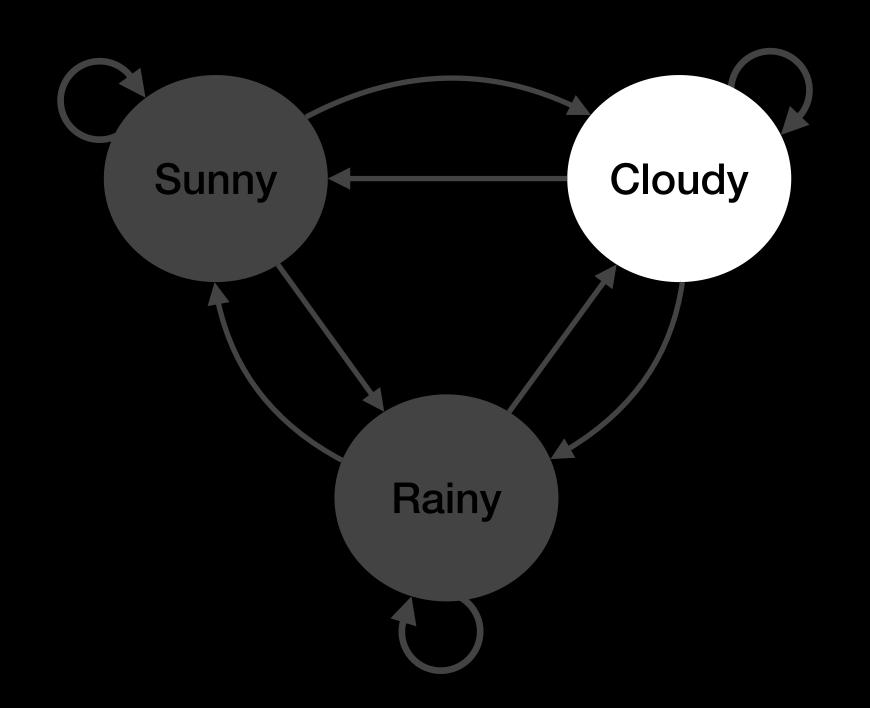
Cloudy, Rainy, Rainy



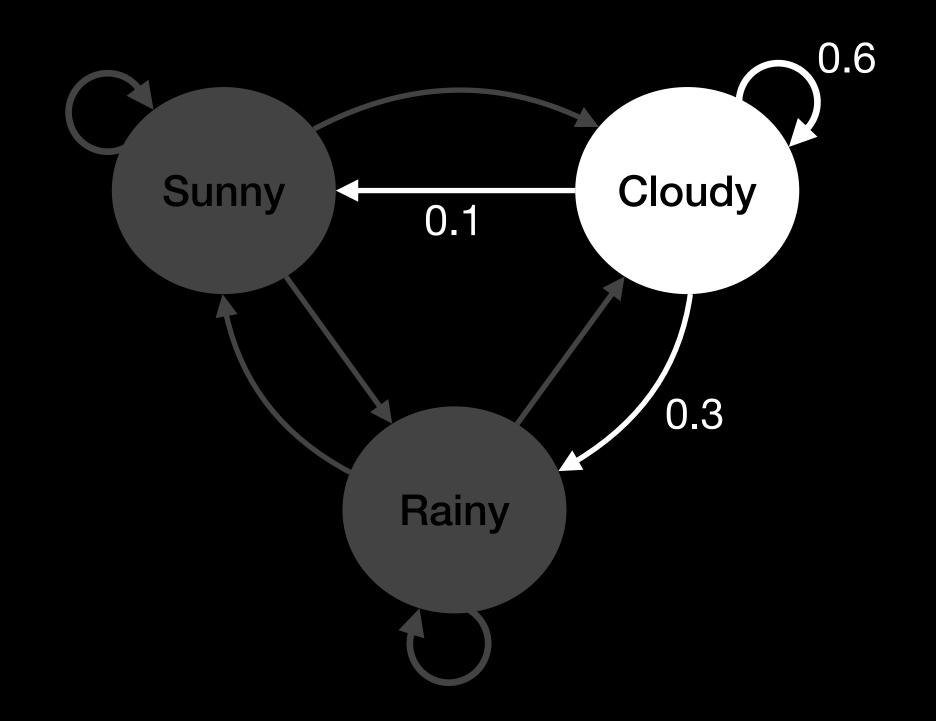
Cloudy, Rainy, Rainy



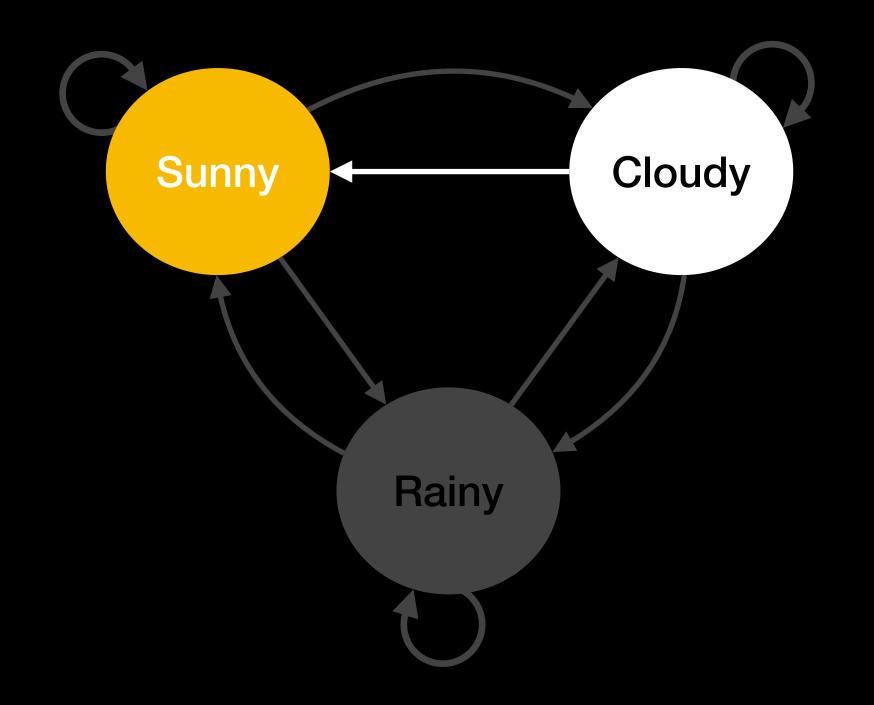
Cloudy, Rainy, Rainy



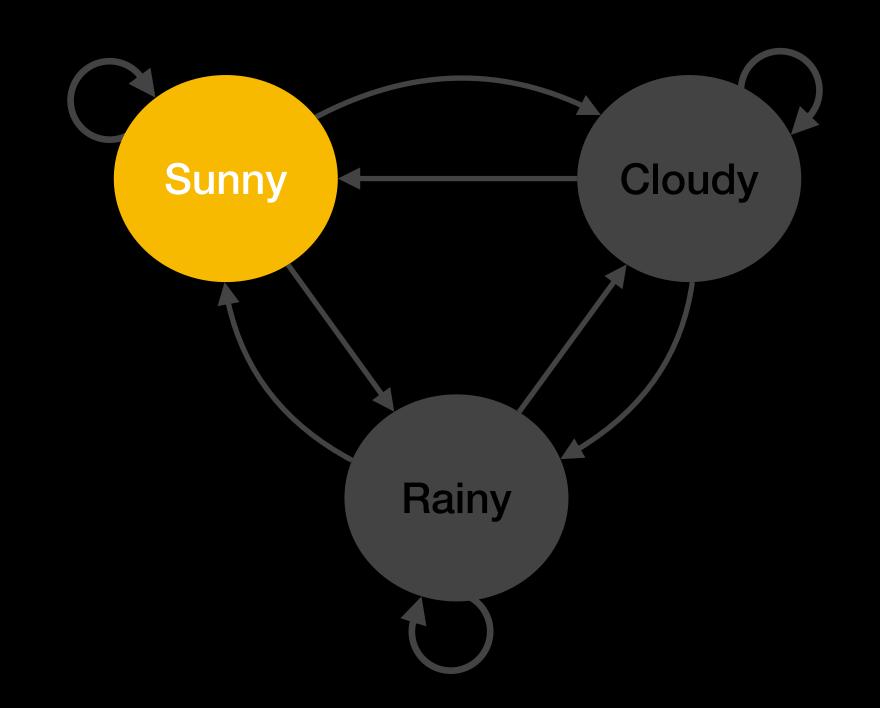
Cloudy, Rainy, Rainy, Cloudy



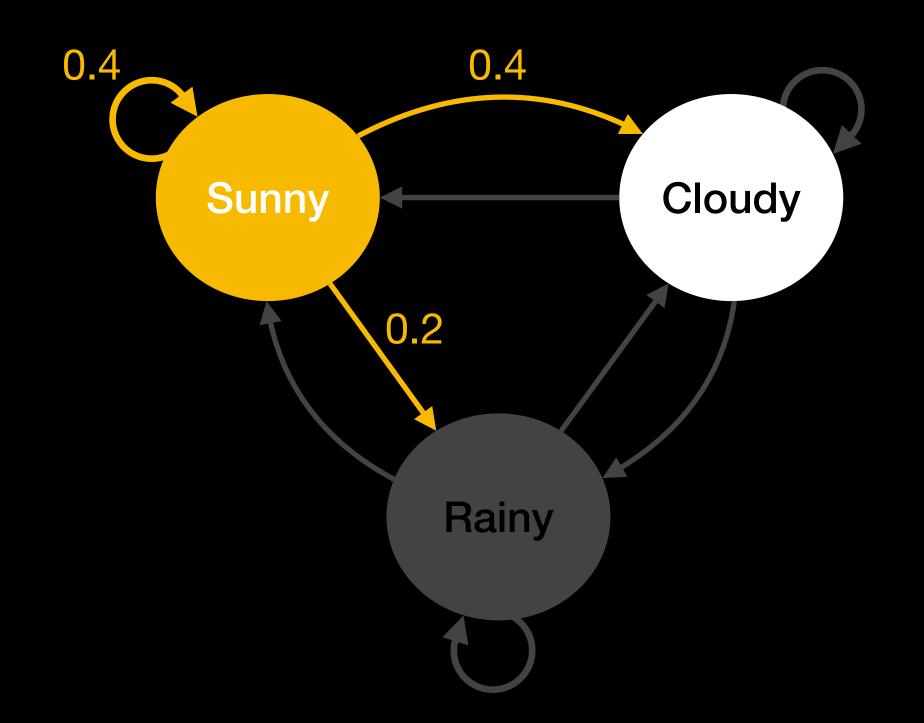
Cloudy, Rainy, Rainy, Cloudy



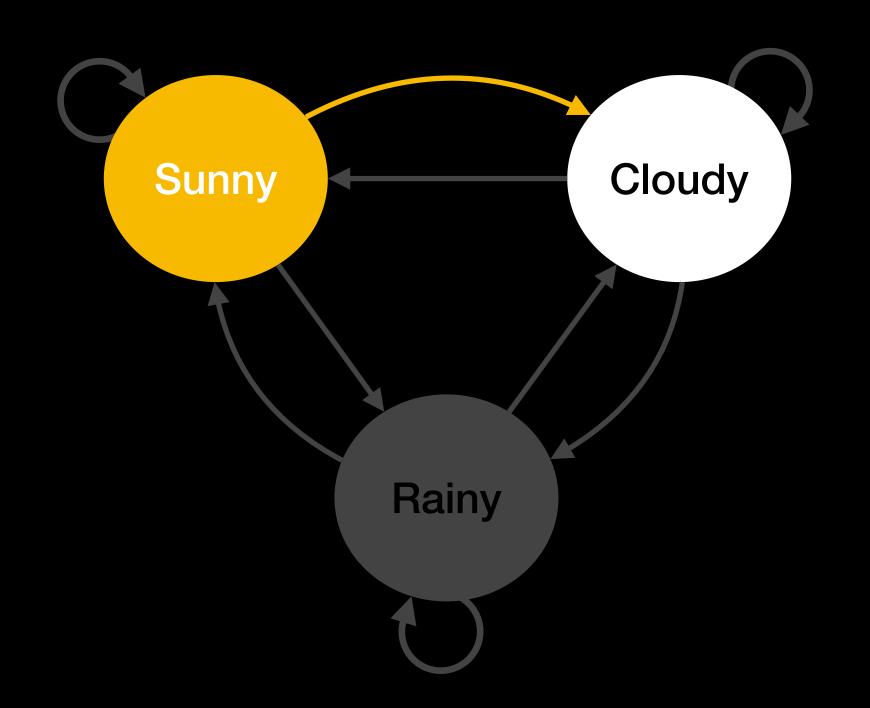
Cloudy, Rainy, Rainy, Cloudy



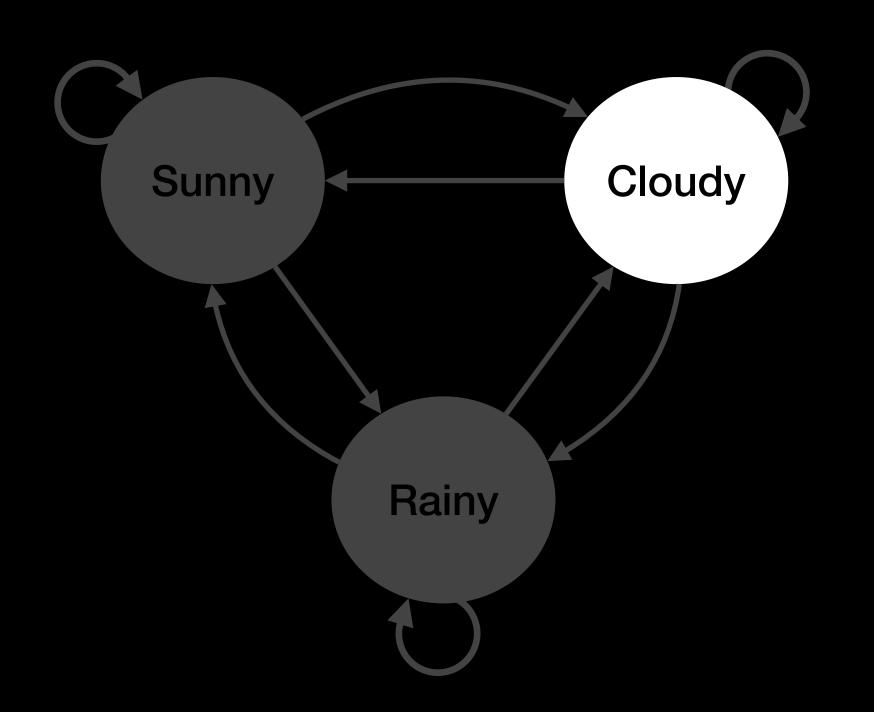
Cloudy, Rainy, Rainy, Cloudy, Sunny



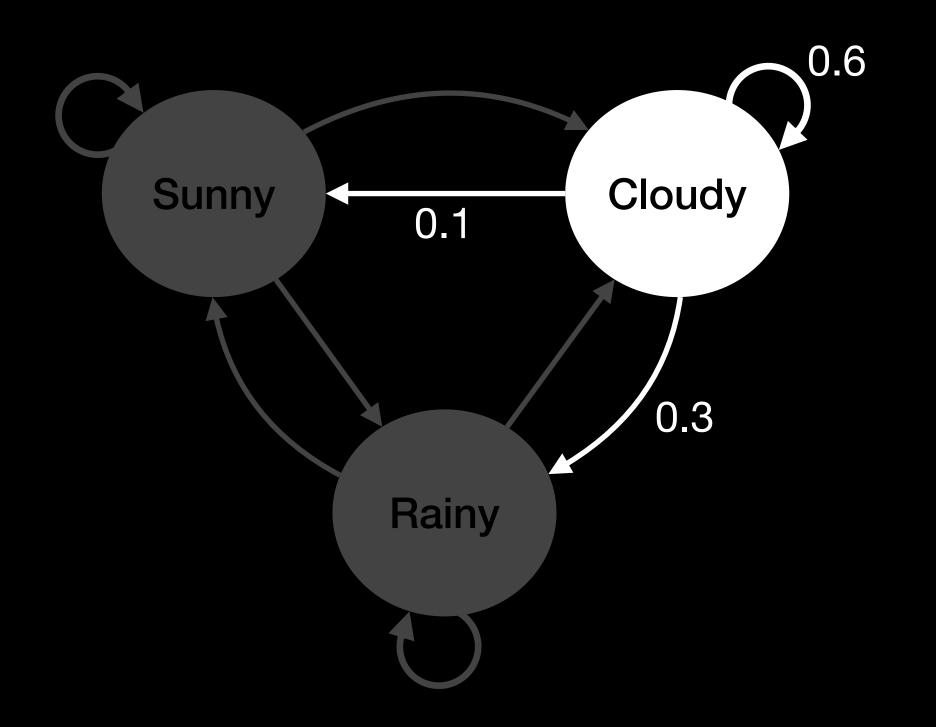
Cloudy, Rainy, Rainy, Cloudy, Sunny



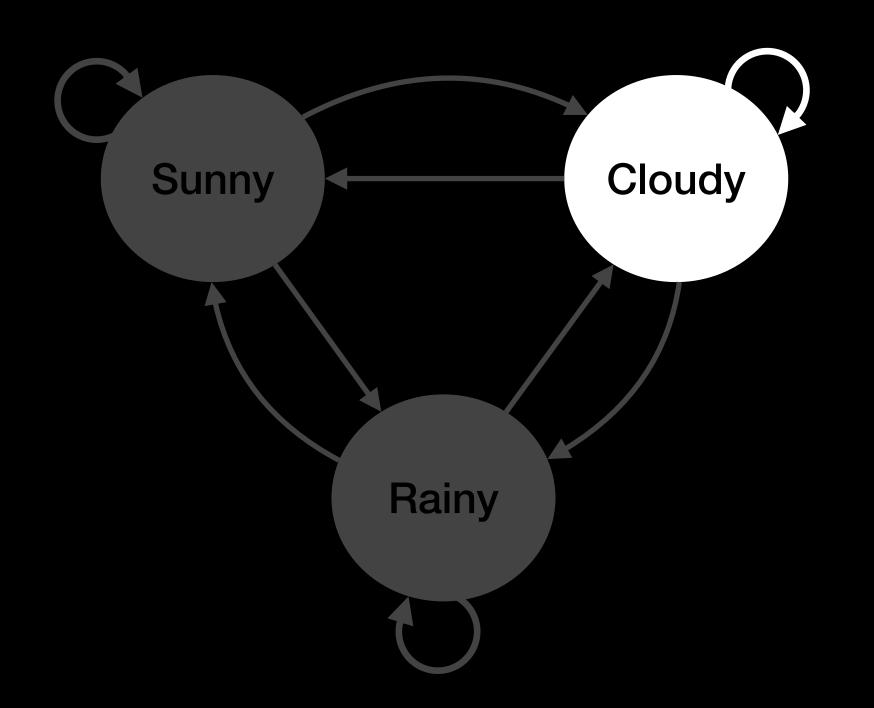
Cloudy, Rainy, Rainy, Cloudy, Sunny



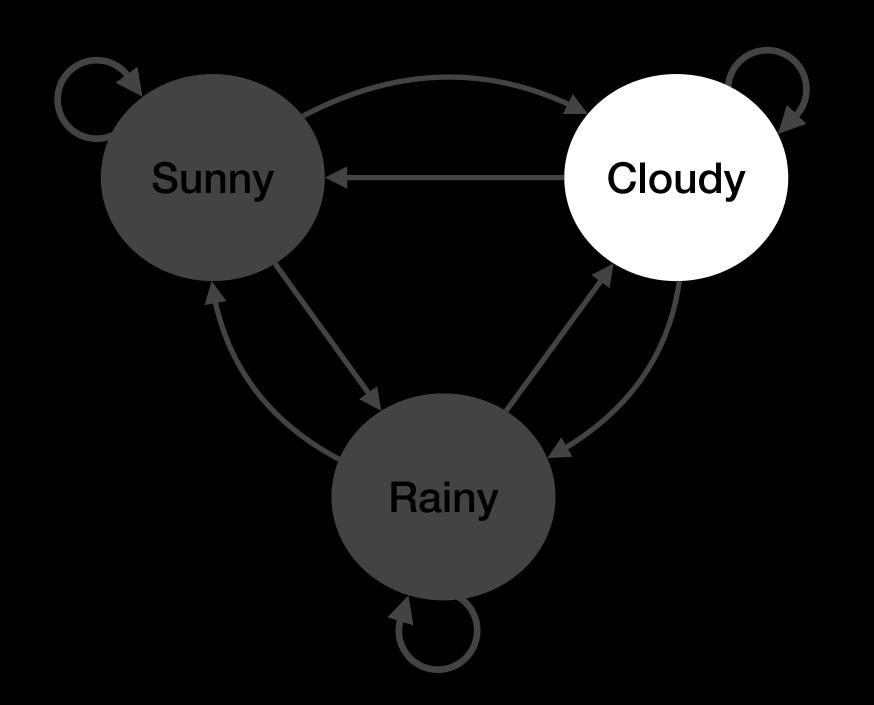
Cloudy, Rainy, Rainy, Cloudy, Sunny, Cloudy



Cloudy, Rainy, Rainy, Cloudy, Sunny, Cloudy



Cloudy, Rainy, Rainy, Cloudy, Sunny, Cloudy



Cloudy, Rainy, Rainy, Cloudy, Sunny, Cloudy, Cloudy

#### ChatGPT = Chatbot + GPT4

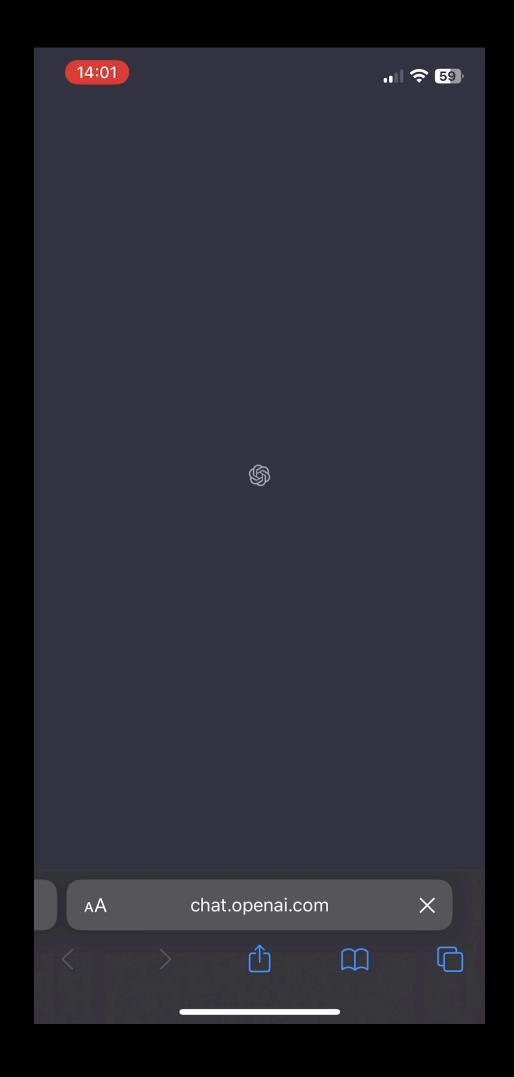
Chatbot: developed by OpenAl mix of supervised & reinforcement learning

GPT4: Generative Pre-trained Transformer 4 type of large language model (fancy predictive text)

"The quick brown fox jumps over the \_\_\_\_\_"

```
Lazy 95%
Slow 2%
Fun 1%
...
Zyzzyva 0%
```

Trained on all available text on the internet



#### Major issues with large language models

Based on what ever data it was trained on

May not be relevant, accurate, or pleasant

Generative process is inherently stochastic

Response choices and sentence construction depend on sampling distributions randomly

Hard to evaluate and verify

How often will it be right? What is right?

## Clinical Al

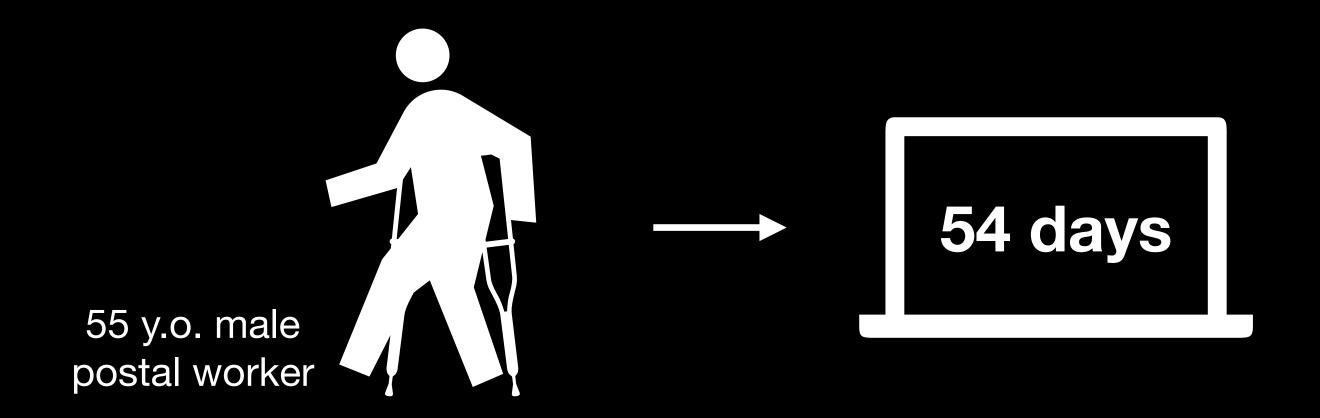
## Repurposing Predictive Models

Return to Work

### Our Goal

Predict the work-status over the course of a patient's recovery.

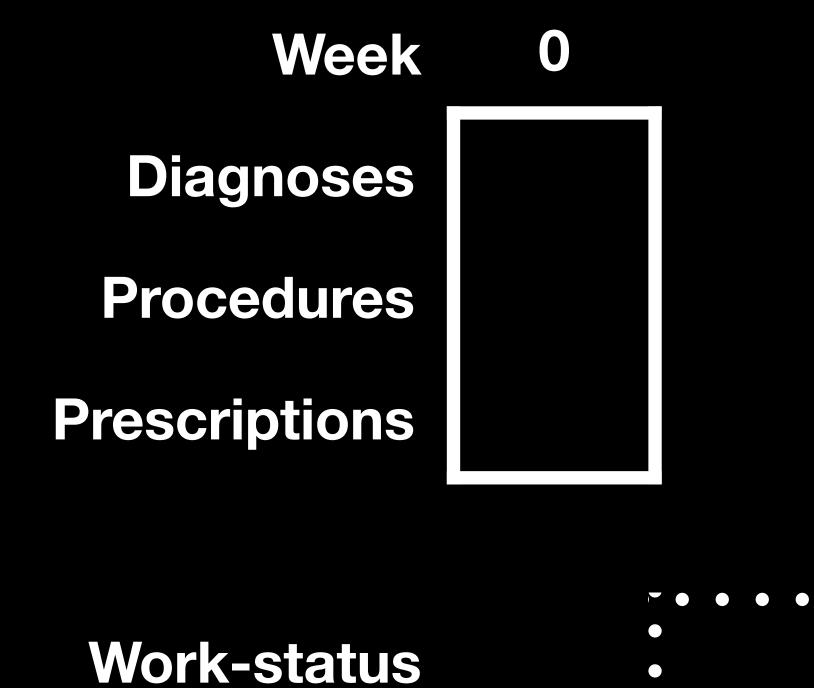
# Existing return to work models ignore longitudinal observations.



# What is the value of longitudinal observations in return to work prediction?

Do we observe a performance improvement when using longitudinal observations collected beyond the time of injury?

Presume longitudinal observations improve predictions in other healthcare task.



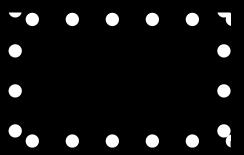
Week 0 1

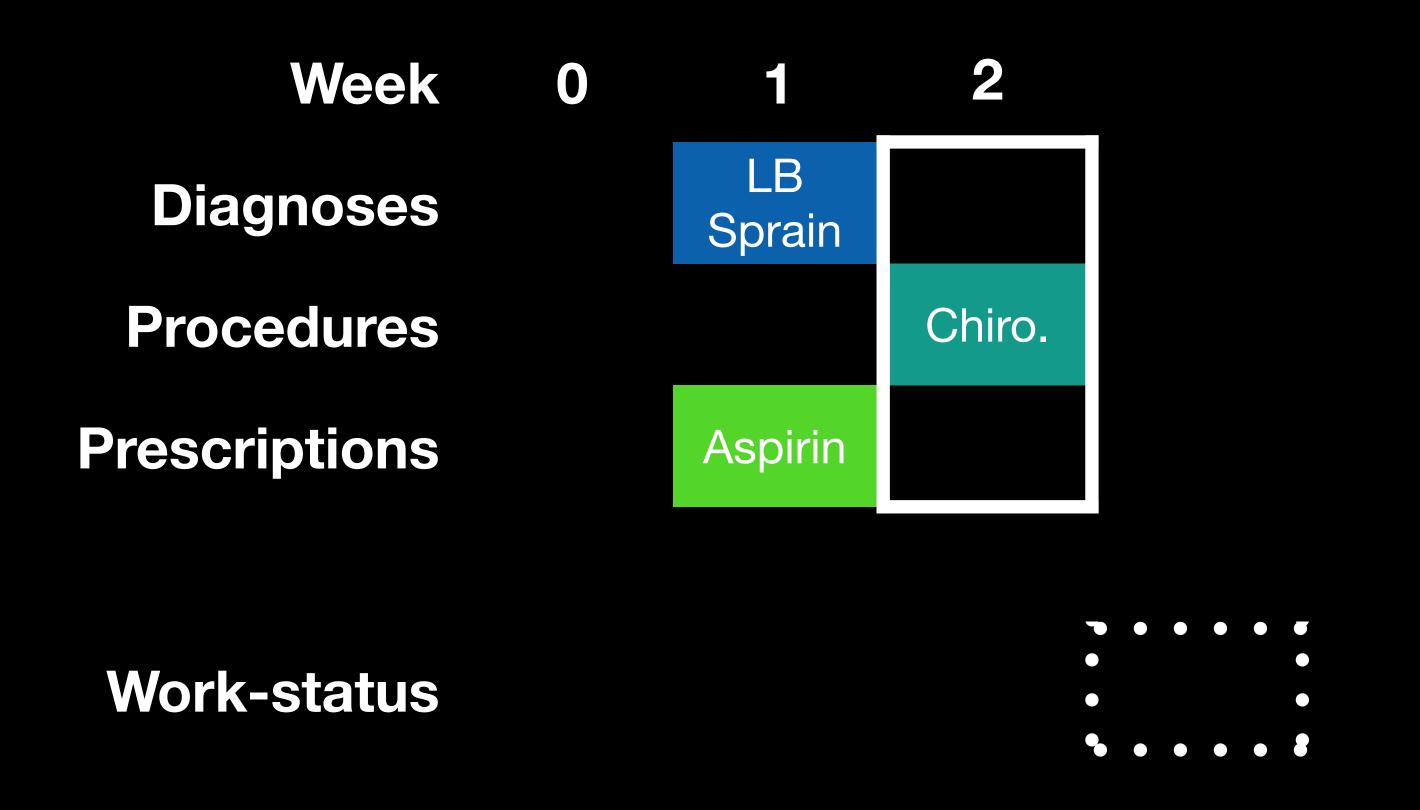
Diagnoses
Procedures

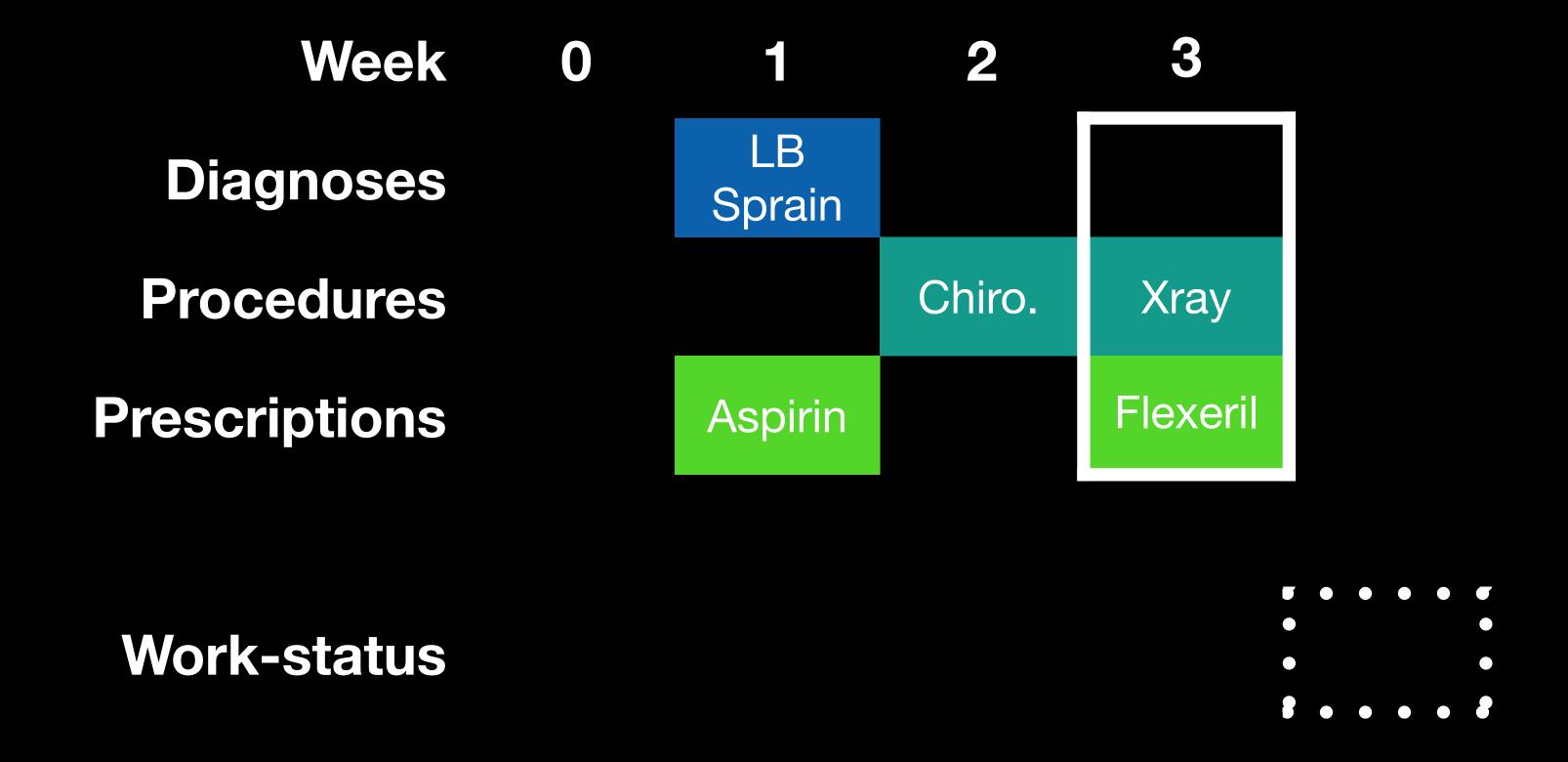
Prescriptions

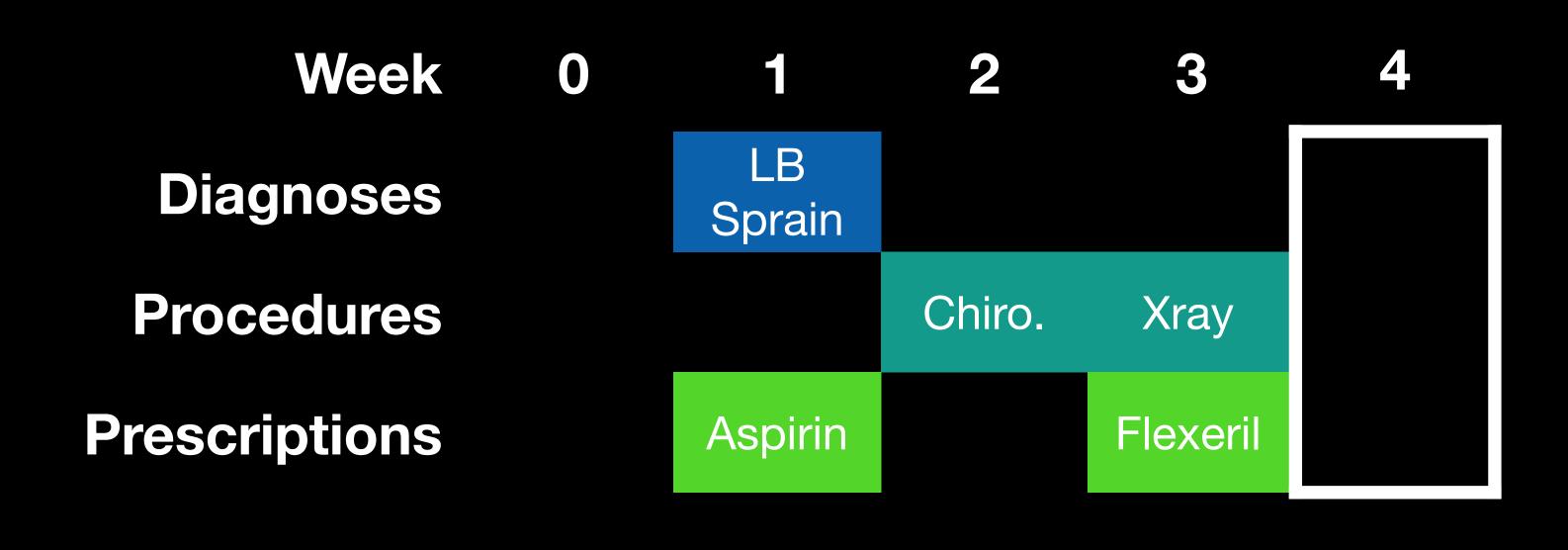
Aspirin

Work-status



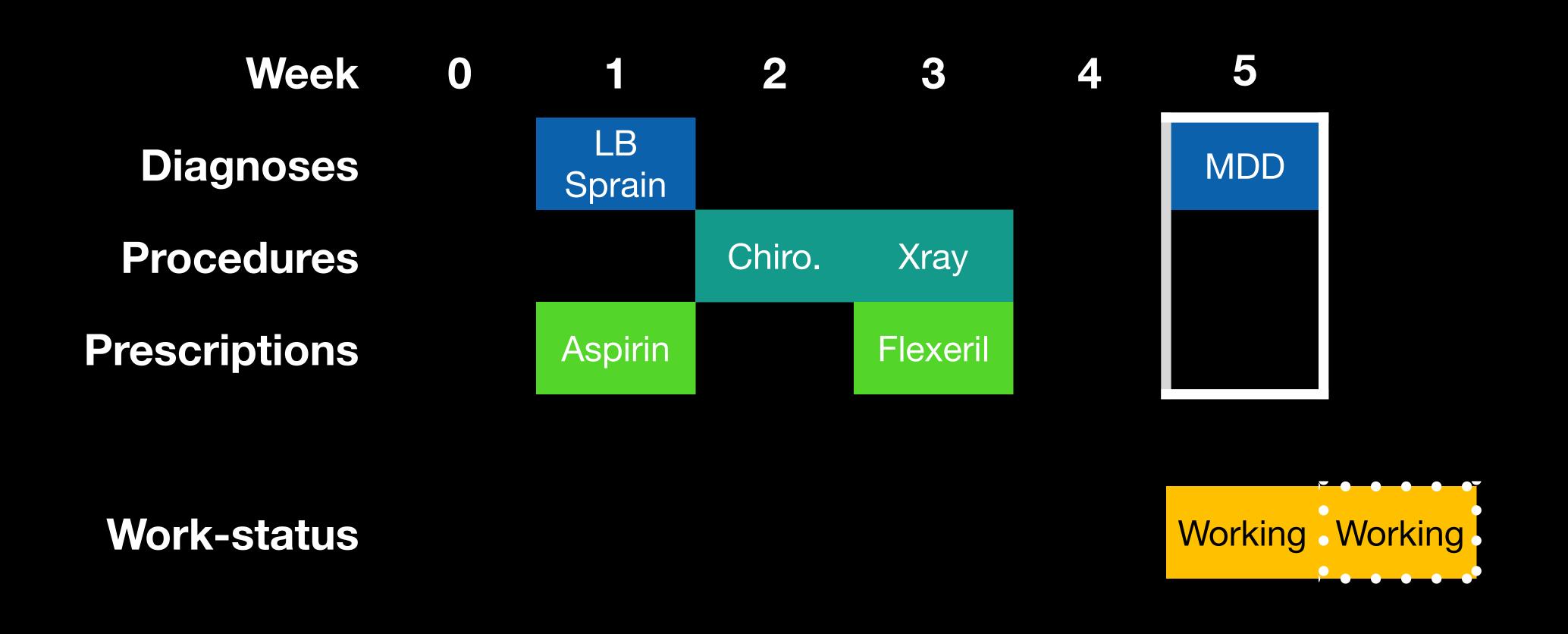


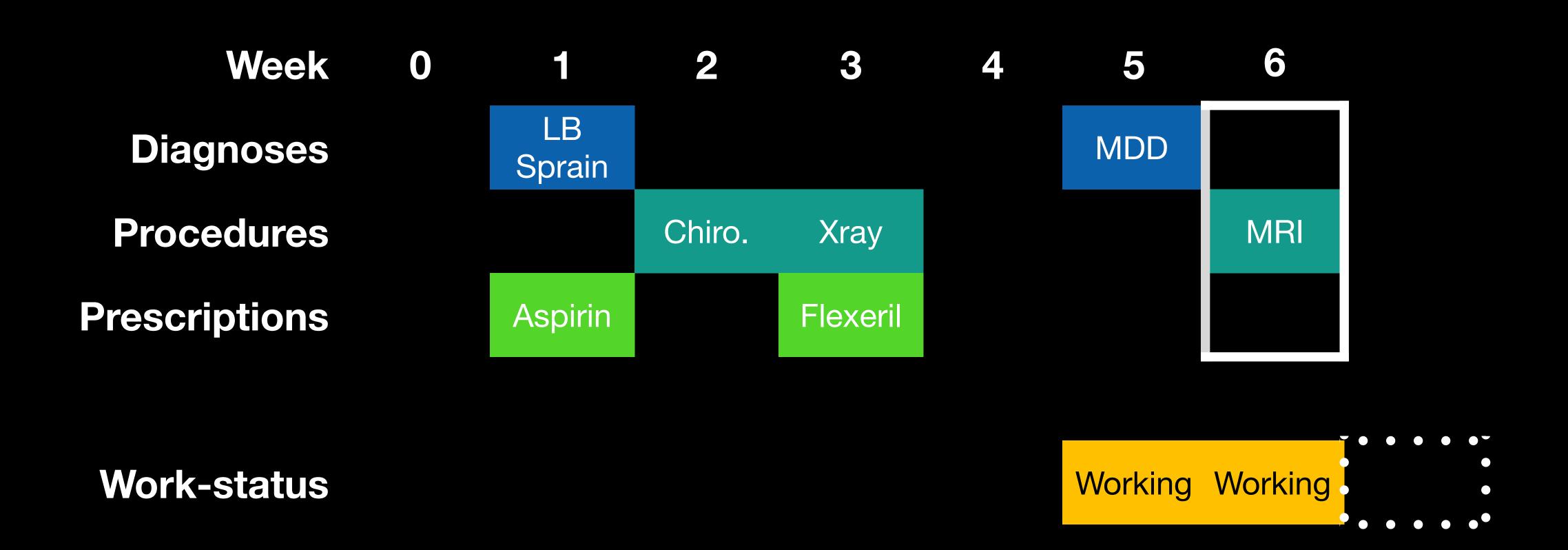




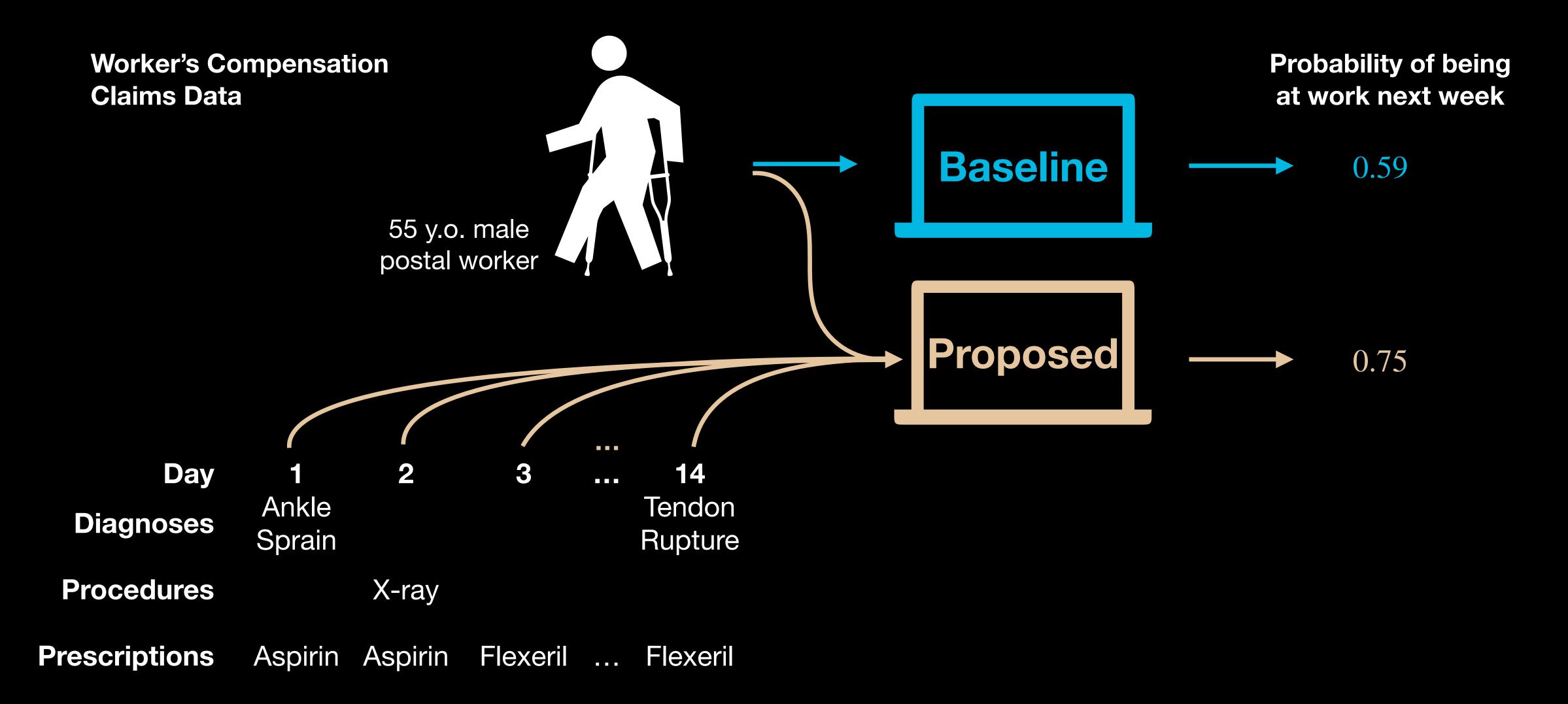
**Work-status** 





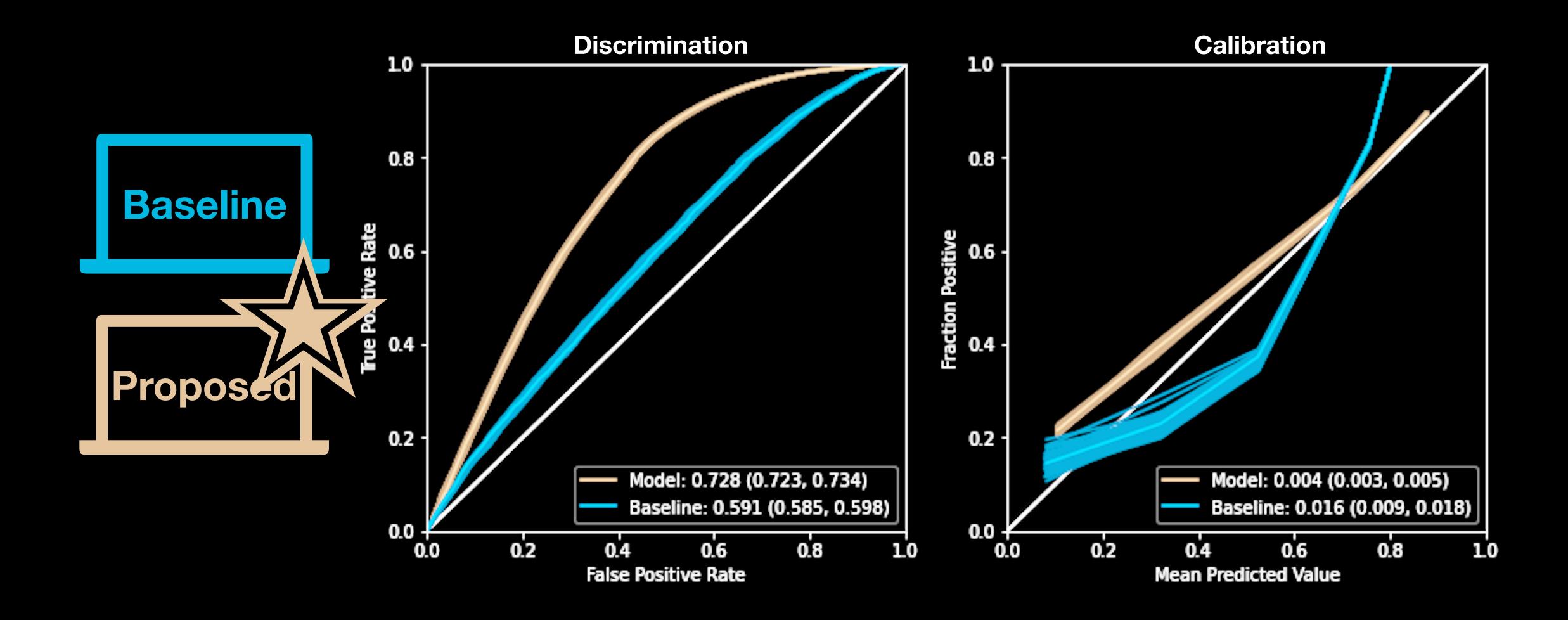


## Experimental setup



<u>Ötleş et al. 2022</u>

### Results



72

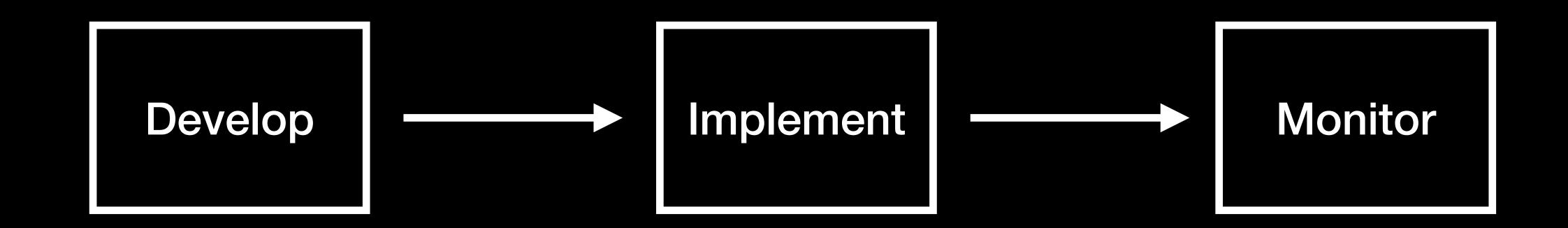
# Constant evaluation is fundamental

Prostate cancer

C. difficile infection risk

Sepsis

## Simplified model lifecycle



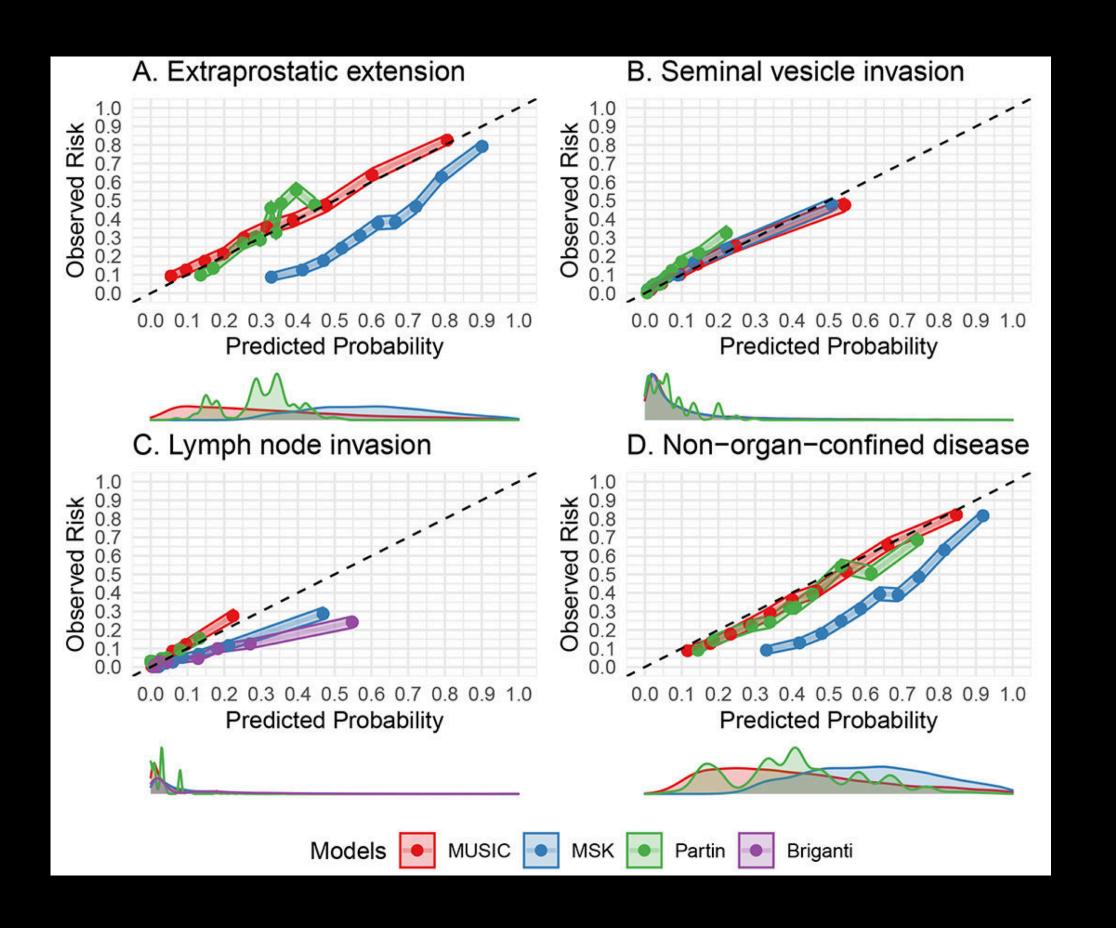
## Simplified model lifecycle



Evaluation of prostate cancer pathological outcomes prediction

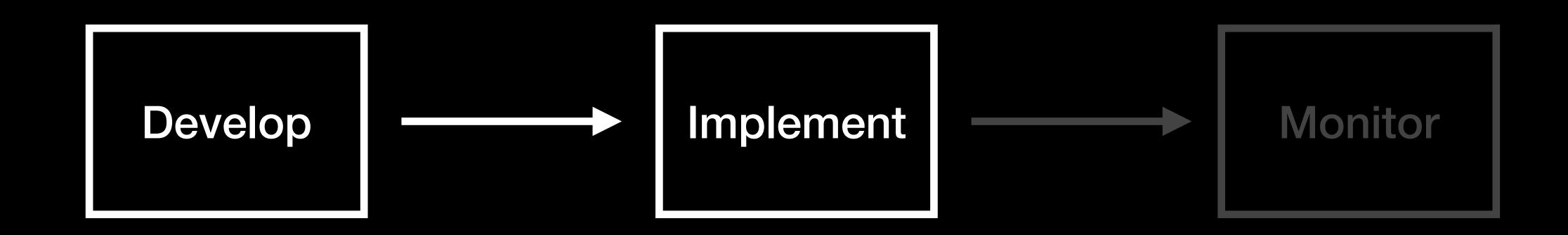
# Internal vs. External Validation

Models developed by other institutions under perform compared to training institution specific models



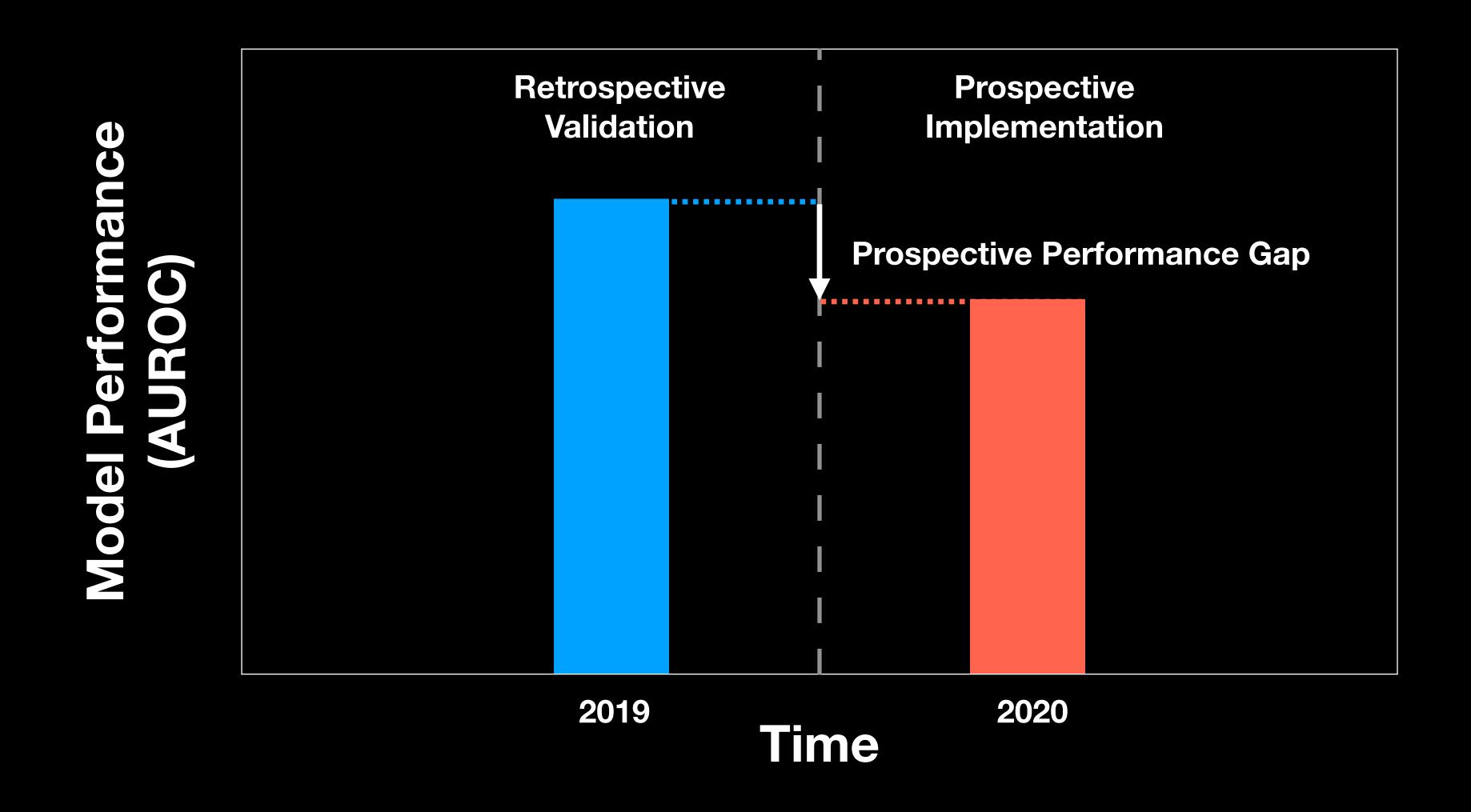
76

## Simplified model lifecycle

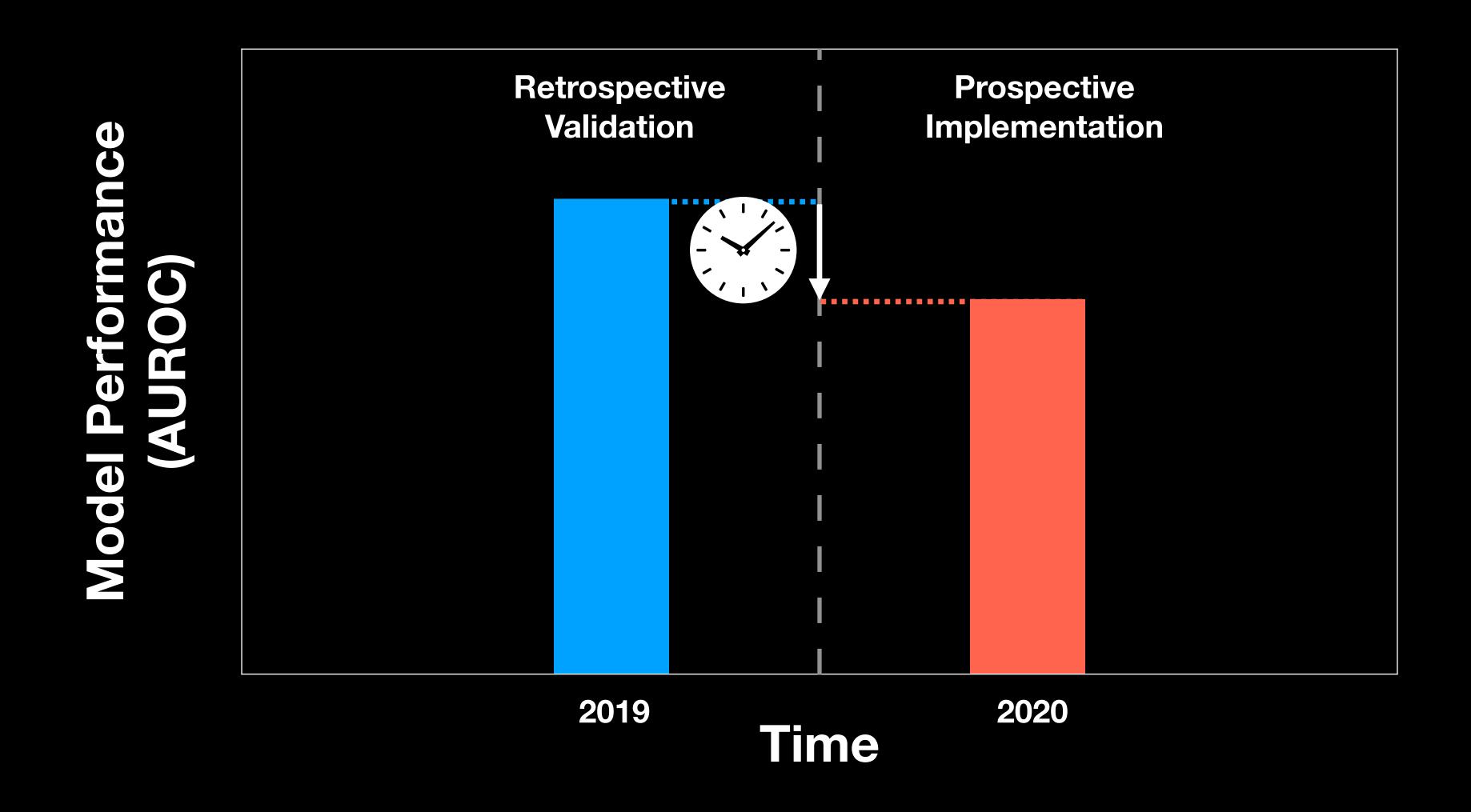


Prospective evaluation of inpatient C. difficile infection risk prediction

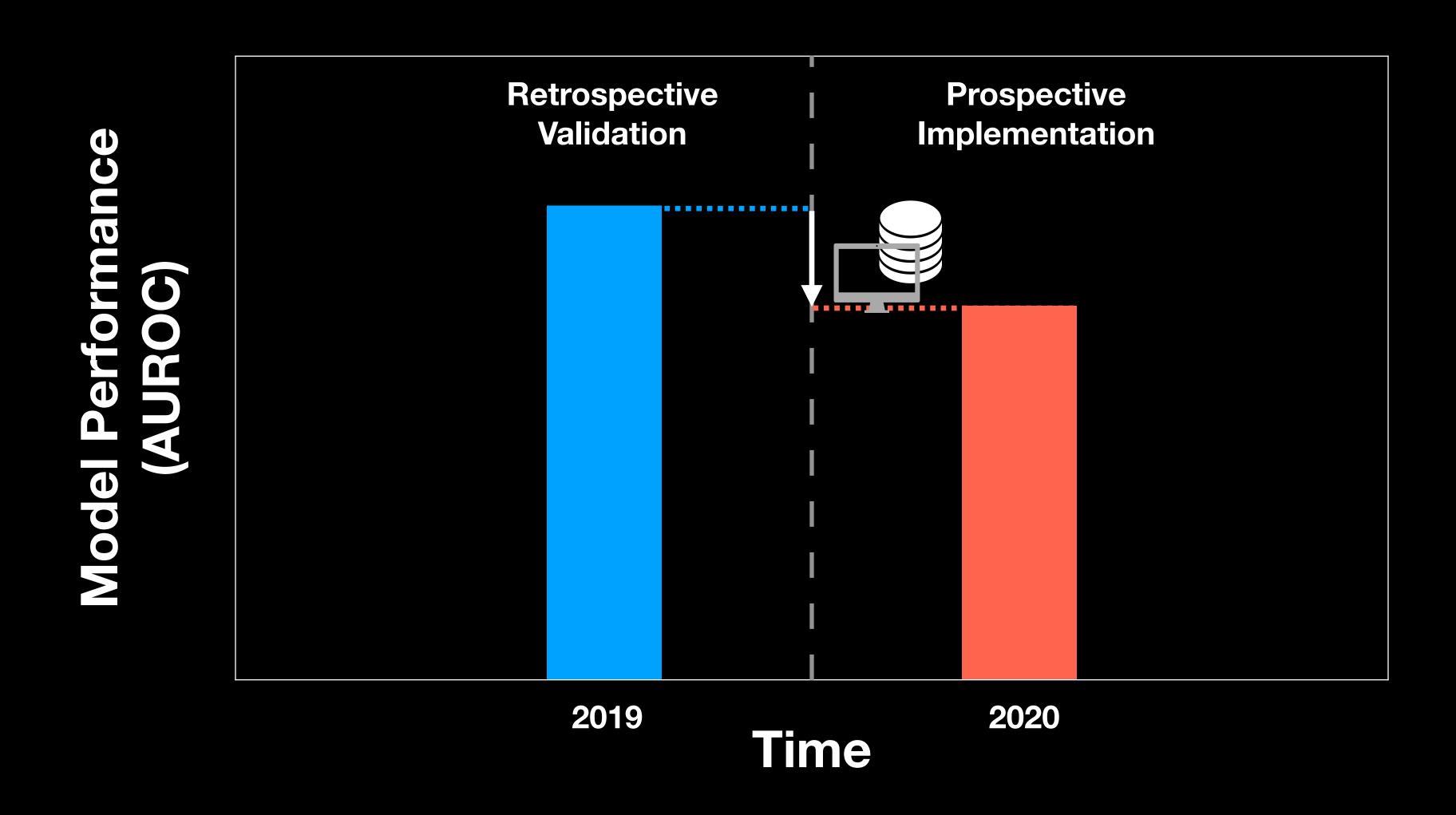
# Model performance may degrade after implementation.



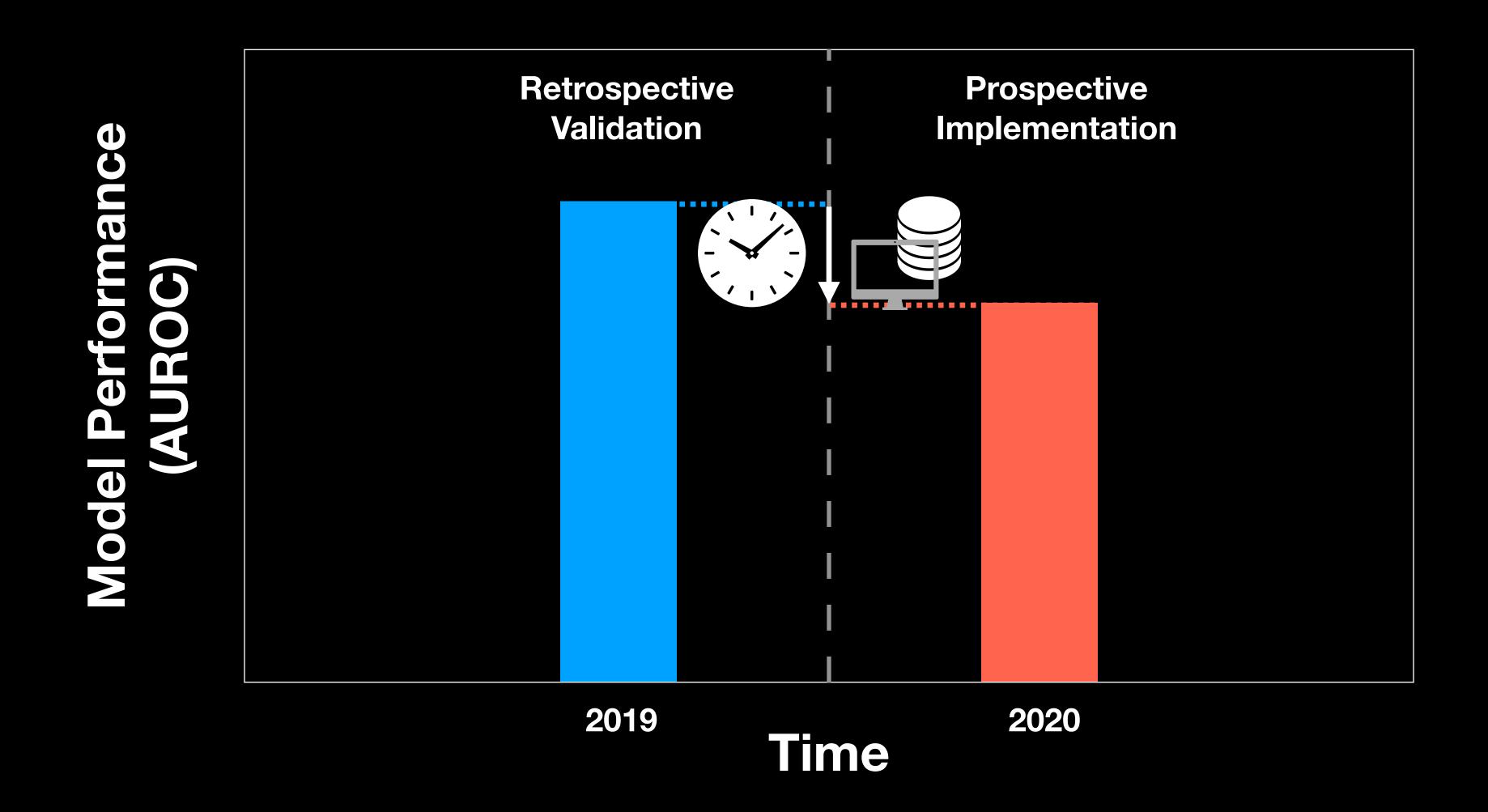
# This degradation is often attributed to changes in populations & practice that occurs over time.



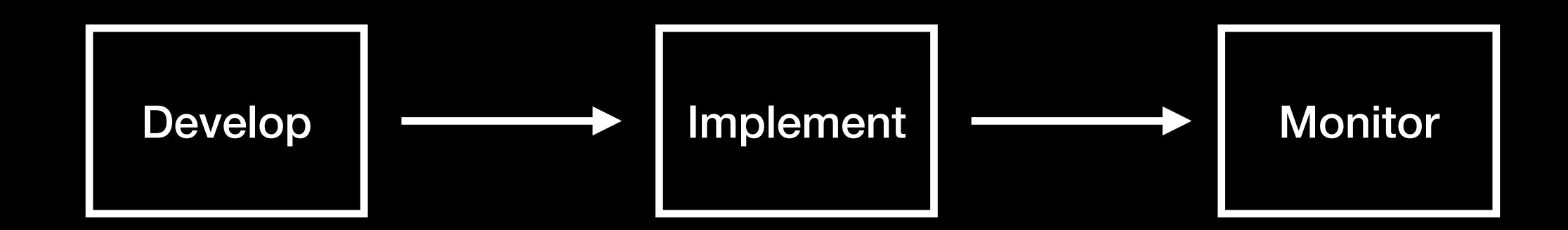
# However, changes in IT infrastructure may also affect the prospective performance gap.



### Degradation due to temporal & infrastructure shift.

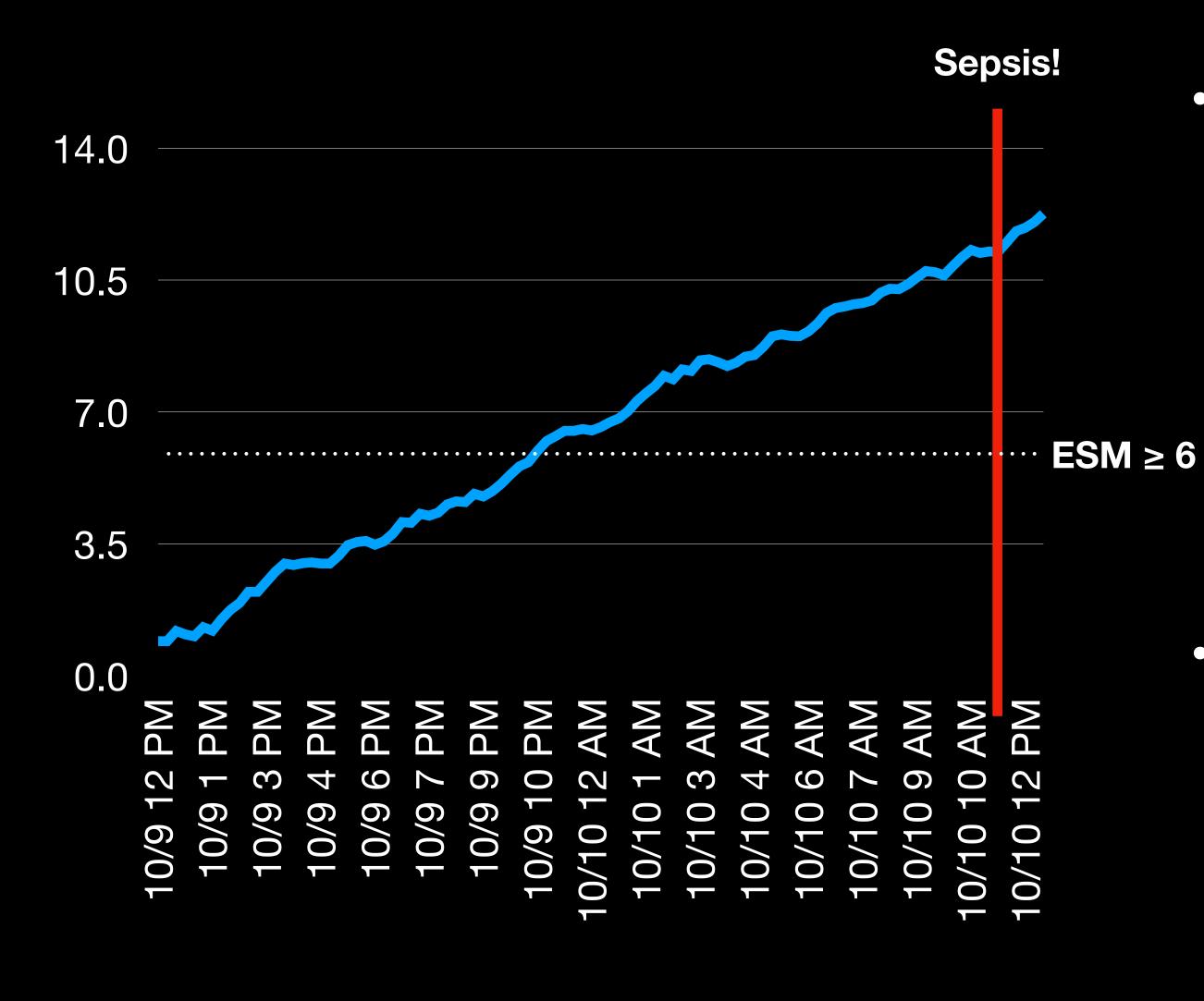


## Simplified model lifecycle



Prospective evaluation of Epic sepsis model

## Epic Sepsis Model



- Development
  - Inputs: vital signs, medication orders, lab values, comorbidities, and demographic information.
  - Outputs: ICD-9 code indicating diagnosis of sepsis - timing 6hrs prior to clinical intervention
- Implementation
  - Runs every 15 minutes on all patients in hospital
  - Expected AUROC performance ~ 0.8

## Table 2

| Table 2. ESM Perfo | rmance |
|--------------------|--------|
|--------------------|--------|

|                                                                 |                  | Time horizons    |                  |                  |                  |
|-----------------------------------------------------------------|------------------|------------------|------------------|------------------|------------------|
| Model performance                                               | Hospitalization  | 24 h             | 12 h             | 8 h              | 4 h              |
| Outcome incidence, %                                            | 6.6              | 0.43             | 0.29             | 0.22             | 0.14             |
| Area under the receiver operating characteristic curve (95% CI) | 0.63 (0.62-0.64) | 0.72 (0.72-0.72) | 0.73 (0.73-0.74) | 0.74 (0.74-0.75) | 0.76 (0.75-0.76) |
| Positive predictive value (ESM score ≥6), %                     | 12               | 2.4              | 1.7              | 1.4              | 0.92             |
| No. needed to evaluate (ESM score ≥6) <sup>a</sup>              | 8                | 42               | 59               | 73               | 109              |

Abbreviation: ESM, Epic Sepsis Model.

only the first time the ESM score is 6 or higher. For each time horizon, the number needed to evaluate assumes that each patient would be evaluated every time the ESM score is 6 or higher.

<sup>&</sup>lt;sup>a</sup> The number needed to evaluate makes different assumptions at the hospitalization and time horizon levels. At the hospitalization level, the number needed to evaluate assumes that each patient would be evaluated

|         | Sepsis | No<br>Sepsis |        |
|---------|--------|--------------|--------|
| ESM ≥ 6 | 843    | 5,948        | 6,791  |
| ESM < 6 | 1,709  | 29,955       | 31,664 |
|         | 2,552  | 35,903       | 38,445 |

|         | Sepsis | No<br>Sepsis |        |
|---------|--------|--------------|--------|
| ESM ≥ 6 | 843    | 5,948        | 6,791  |
| ESM < 6 | 1,709  | 29,955       | 31,664 |
|         | 2,552  | 35,903       | 38,445 |

$$PPV = \frac{TP}{TP + FP} = \frac{843}{6791} \approx 12\%$$

|         | Sepsis | No<br>Sepsis |        |
|---------|--------|--------------|--------|
| ESM ≥ 6 | 843    | 5,948        | 6,791  |
| ESM < 6 | 1,709  | 29,955       | 31,664 |
|         | 2,552  | 35,903       | 38,445 |

$$NNE = \frac{1}{PPV} = \frac{6791}{843} \approx 8$$

|         | Sepsis<br>(No Abx) |       |       |
|---------|--------------------|-------|-------|
| ESM ≥ 6 | 183                | 660   | 843   |
| ESM < 6 | 679                | 1,030 | 1,709 |
|         | 862                | 1,690 | 2,552 |

|         | Sepsis<br>(No Abx) | Sepsis (Abx) |       |
|---------|--------------------|--------------|-------|
| ESM ≥ 6 | 183                | 660          | 843   |
| ESM < 6 | 679                | 1,030        | 1,709 |
|         | 862                | 1,690        | 2,552 |

$$P(Useful \mid Correct) = \frac{P(Useful \cap Correct)}{P(Correct)} = \frac{183}{843} \approx 22\%$$

Wong et al. 2021

# Why such a big difference between expected & observed performance?

## Subtle choice of outcome definition

Development: ICD-9 code indicating diagnosis of sepsis

Our outcome: Health catalyst operational sepsis outcome

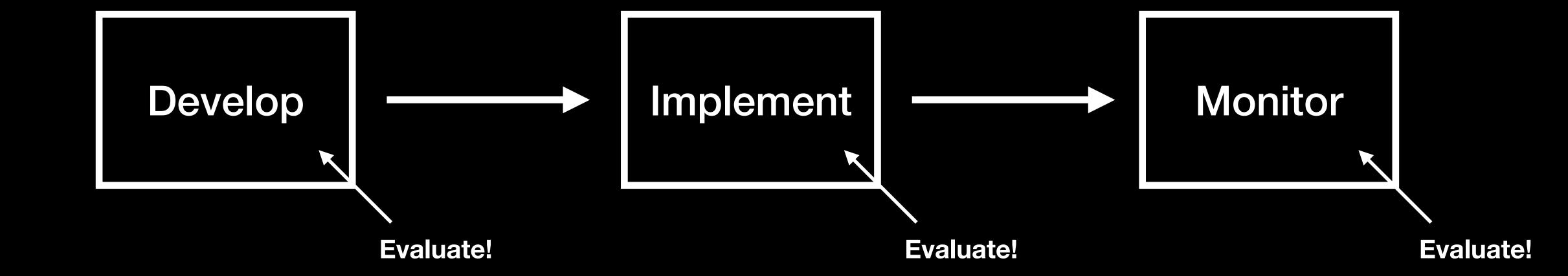
Billing lags behind actual clinical care

#### **Sensitivity Analysis**

When ESM scores up to 3 hours after the onset of sepsis were included, the hospitalization-level AUC improved to 0.80 (95% CI, 0.79-0.81).

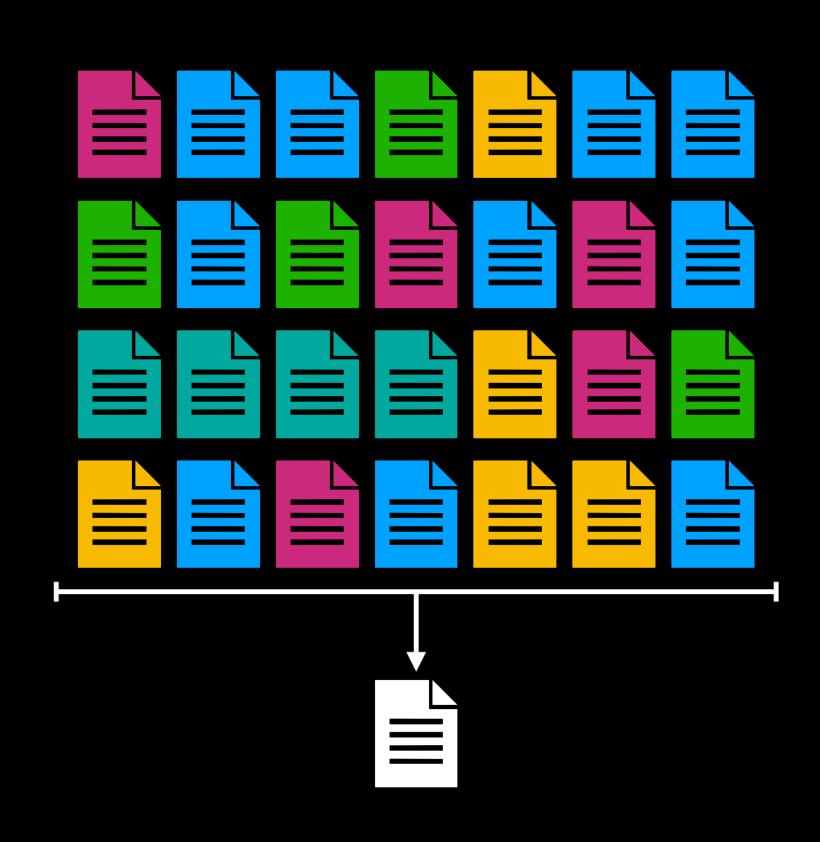
## makes a big difference

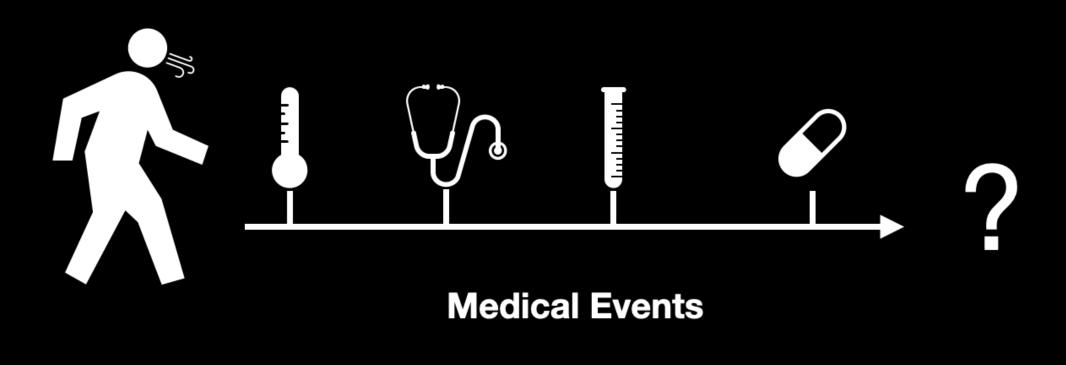
## All models are wrong, but some are useful...



## Generative Al Tools Being Developed







Al Scribe

Al Chart Summarization

Medical Foundation Models

## Al Scribes

#### Goals:

Reduce burden of note creation

Facilitate more face-to-face time

#### Technology:

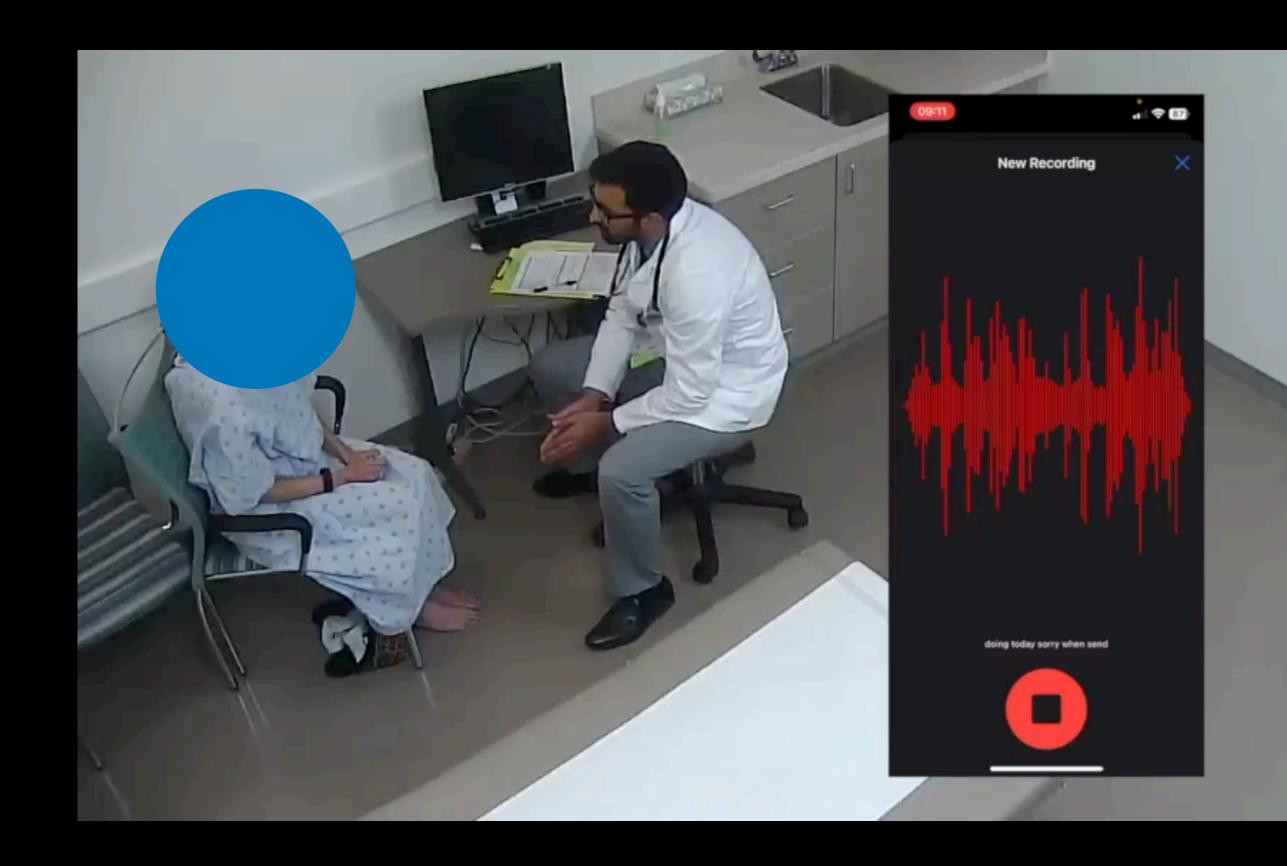
App records encounter

Recording transcribed & converted to a note via LLM

#### Landscape:

2y ago very hard to build

Now extremely easy to build - hard to validate



## AlScribes

#### Goals:

Reduce burden of note creation

Facilitate more face-to-face time

#### Technology:

App records encounter

Recording transcribed & converted to a note via LLM

#### Landscape:

2y ago very hard to build

Now extremely easy to build - hard to validate



11:55



**S** Back

Recording Details 🗸



#### Apr 3, 2024 at 09:21

Transcript

Summary

\*\*SUBJECTIVE\*\*

The patient is a male who presents today with complaints of unusual chest pain. He reports inappropriate discomfort and a vague constricted feeling in the direct center of his chest for the past month, noting that it has occurred approximately three times. The pain is described as a tightness, not notably influenced by any specific factor, but has been experienced during physical activities such as moving boxes in the basement and cleaning out the garage. The onset of discomfort is gradual, persisting for about 10 minutes before it subsides, primarily upon relaxation and rest. Medications have apparently yielded no significant relief. Apart from the localized chest pain, patient reported accompanying symptoms like light sweating, nausea, and shortness of breath that were experienced for the first time yesterday during grocery shopping when he had to carry heavy bags. The patient's primary concern is whether these symptoms signal a serious condition, given his father's cardiac history. He also expressed his disconcert

00:00

(15)

1.93 MB

**ЛВ** -10:51







TPMG studied an Al scribe

From unnamed vendor

Accessible to a wide range of physicians

As of publication time

3k physicians, 303k encounters

Studied

PJ time

Time in notes

Note quality

TPMG studied an Al scribe

From unnamed vendor

Accessible to a wide range of physicians

As of publication time

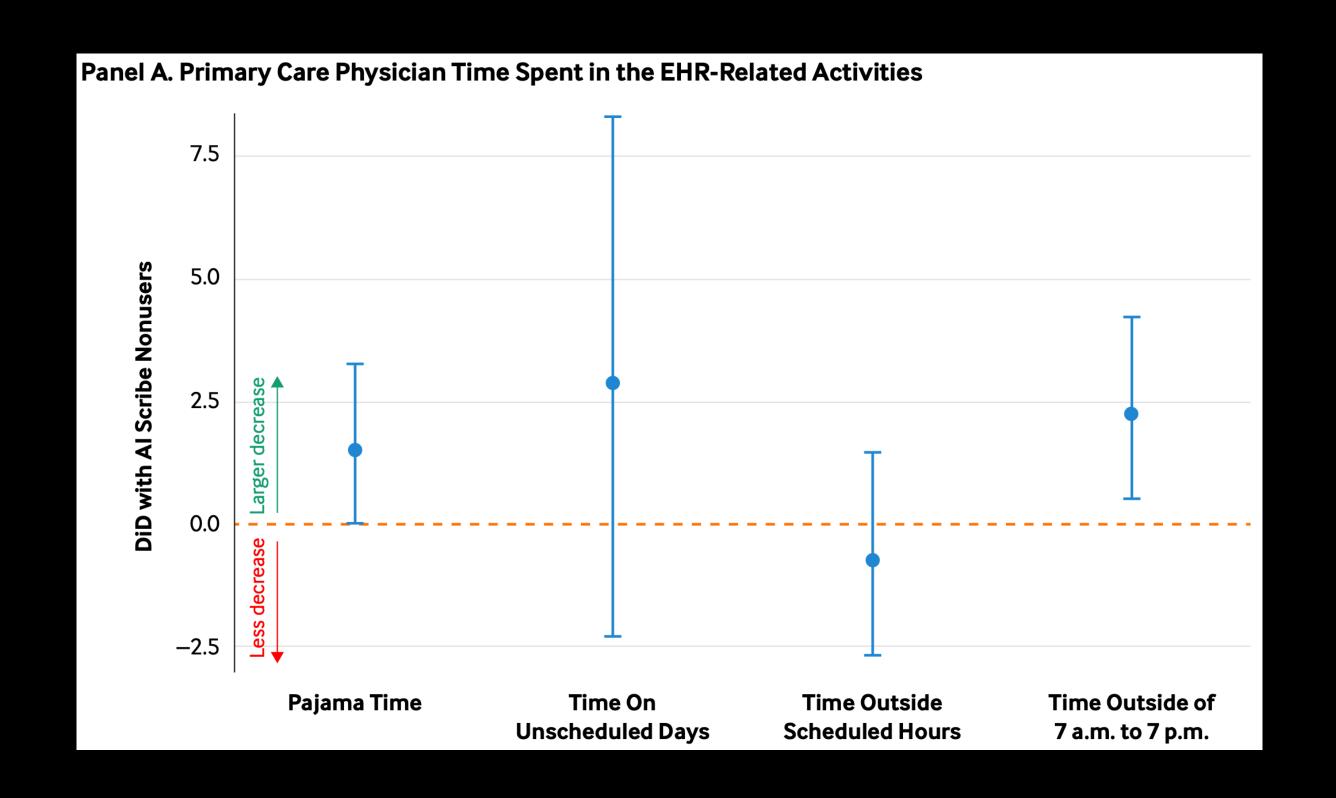
3k physicians, 303k encounters

Studied

PJ time ↓

Time in notes

Note quality



TPMG studied an Al scribe

From unnamed vendor

Accessible to a wide range of physicians

As of publication time

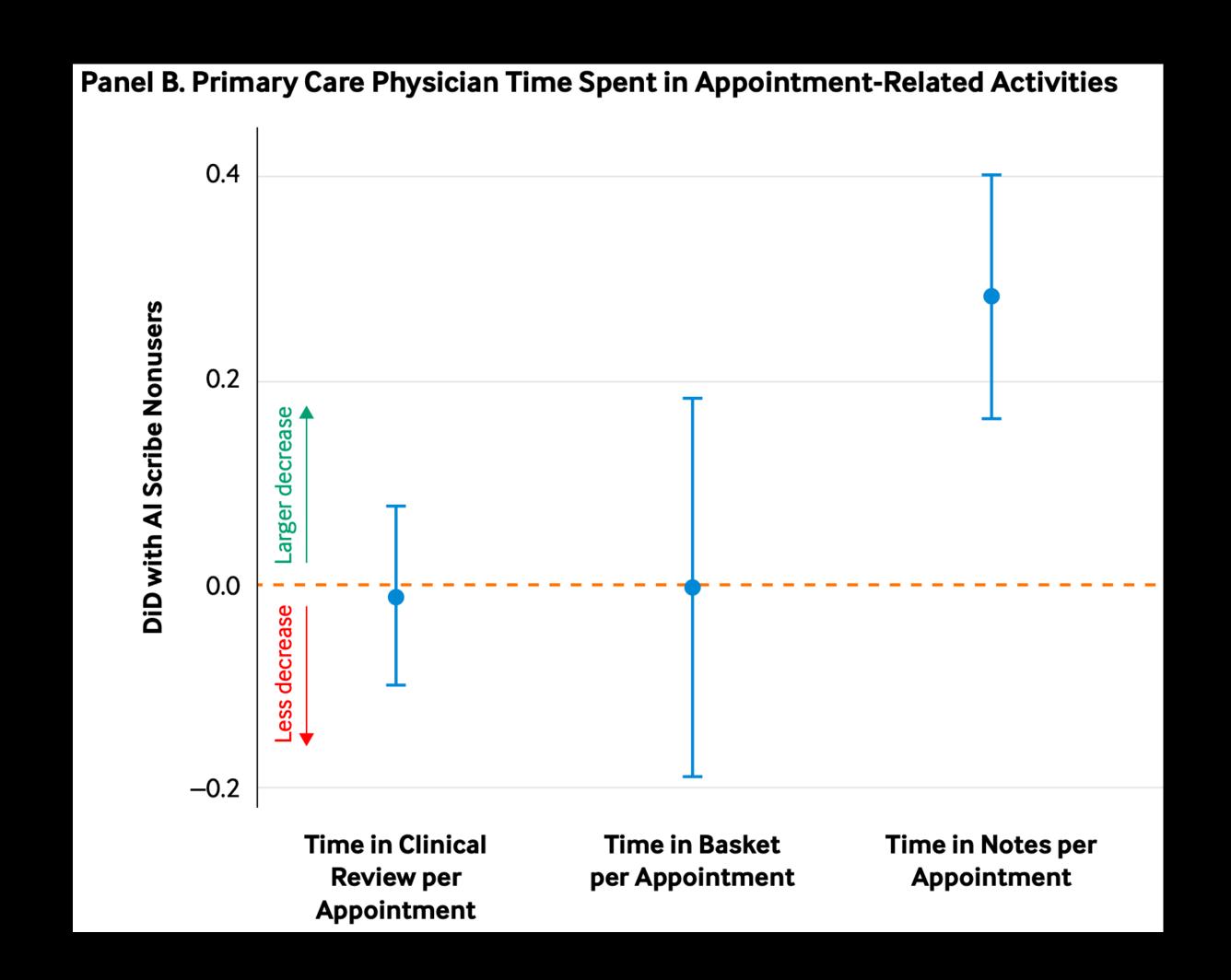
3k physicians, 303k encounters

Studied

PJ time ↓

Time in notes ↓

Note quality



TPMG studied an Al scribe

From unnamed vendor

Accessible to a wide range of physicians

As of publication time

3k physicians, 303k encounters

Studied

PJ time ↓

Time in notes ↓

Note quality ~



## Takeaways

Generative AI is special case of AI

Having a general understanding of Al aids in understanding generative Al

Models can be used in both a generative and predictive sense

Evaluation is critical in Al

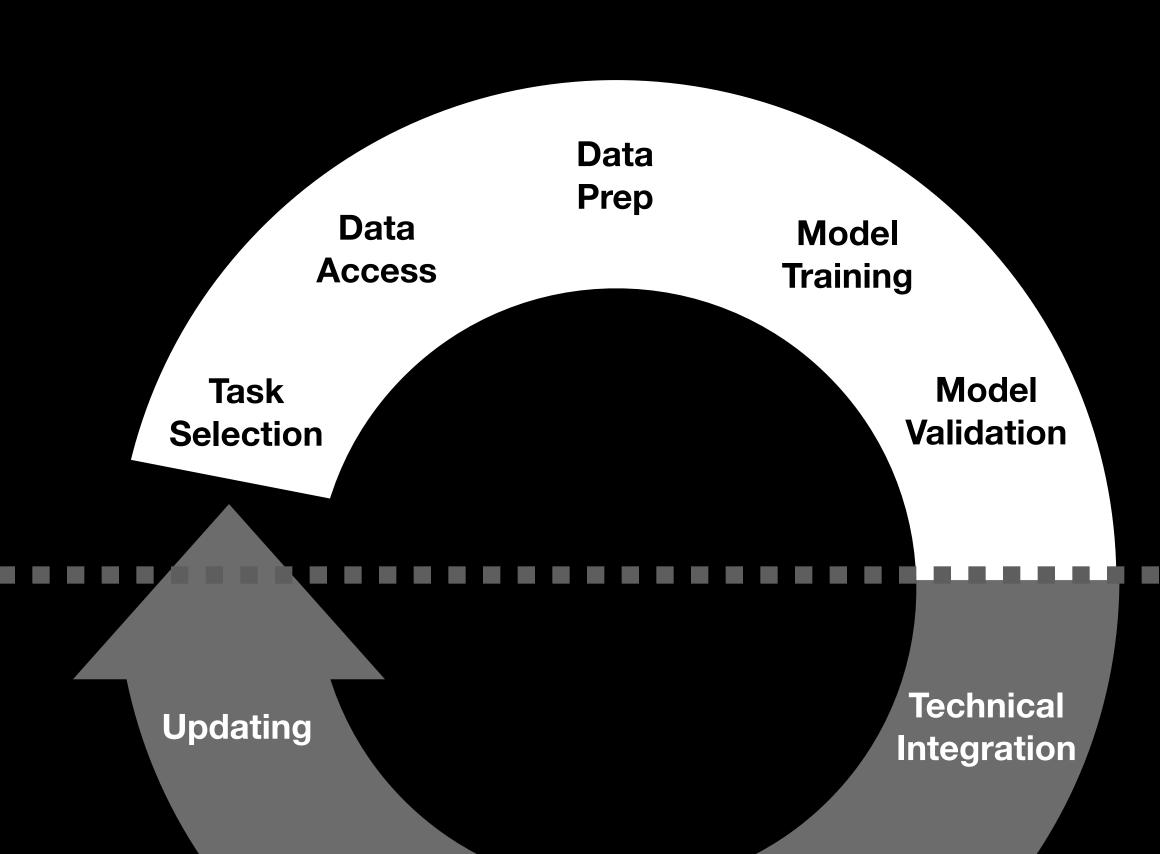
Generative Al is harder to evaluate because the larger amount of use cases

Population biases may be harder to detect

## Most of these tools are still in development

#### Development

**Creation of models** 



Integration into care
Implementation

Integration

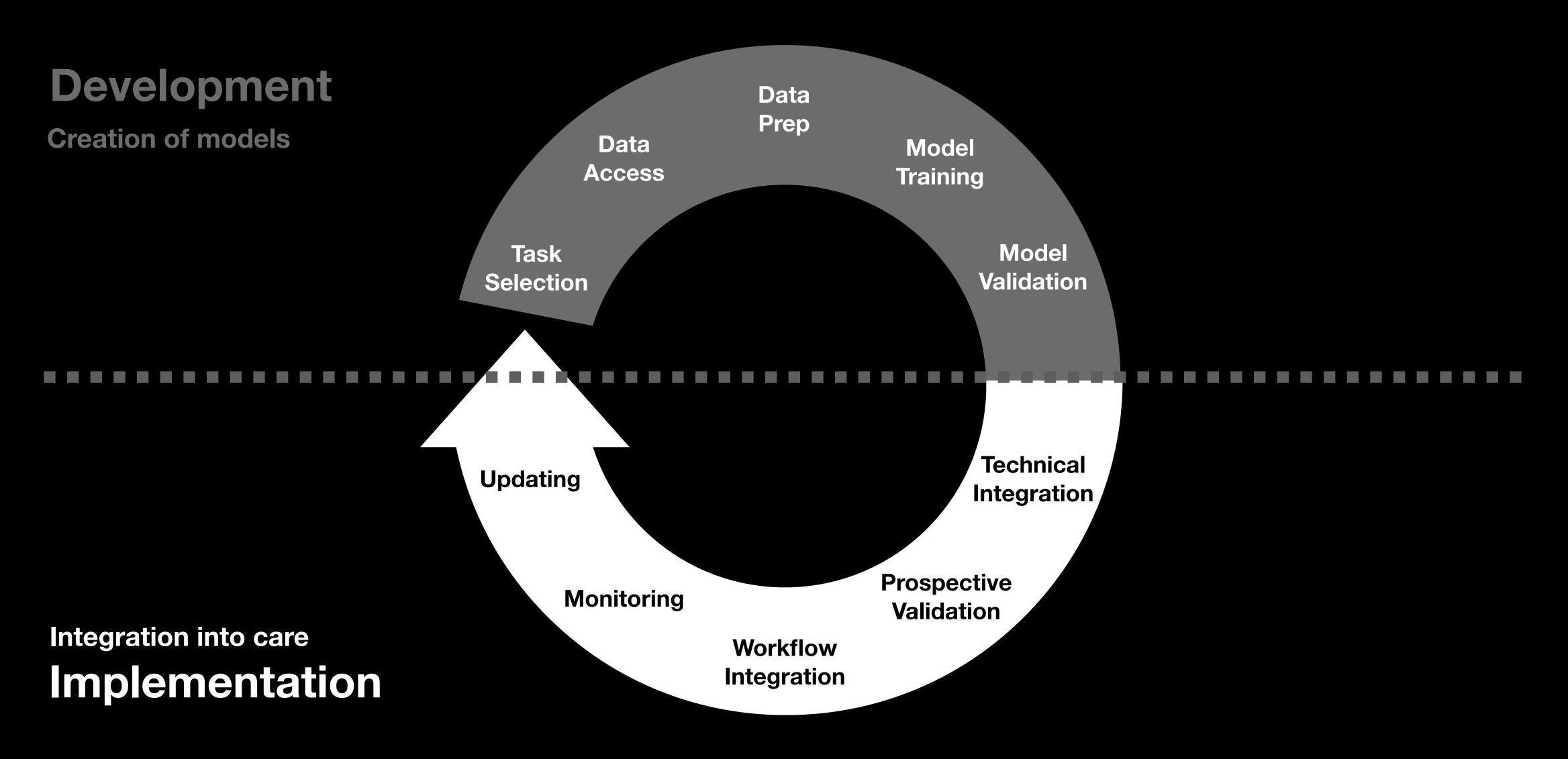
Workflow

**Monitoring** 

**Prospective** 

**Validation** 

## Clinicians need to drive the implementation



## Questions?

Comments? Concerns? Discussion.

Erkin Ötleş
X: @eotles
eotles.com
eotles@umich.edu



## Appendix

## Al Chart Summarization

#### Goals:

Reduce burden of chart review

Help highlight relevant info

Reduce irrelevant info

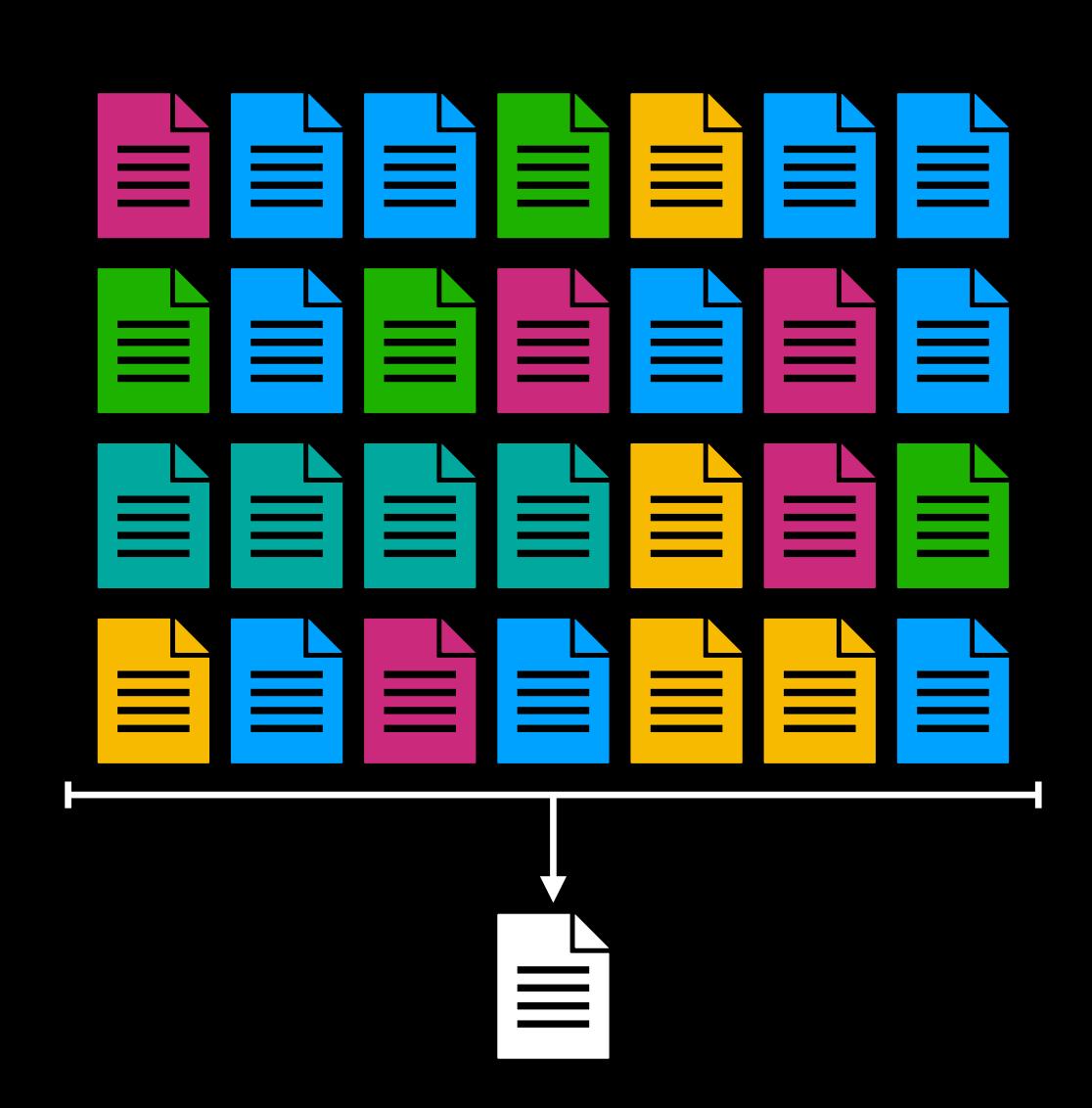
#### Technology:

LLM operating over all available notes

Some discussion of clinician-in-the-loop

#### Landscape:

Easy to build very hard to validate



## Example Chart Summarization



#### ChatGPT

J. Doe, a 58-year-old male with a complex medical history, presented to the ED on 10/02/2025 with severe right upper quadrant (RUQ) pain that started 30 minutes after dinner. His medical background includes:

- Type 2 Diabetes Mellitus: Managed with a regimen that includes Metformin and a GLP-1 receptor agonist. His glycemic control has been generally good, with a recent HbA1c of 6.9% [\*\*].
- **Hypertension**: Well-controlled on a regimen including Lisinopril and Metoprolol succinate. His blood pressure was 132/82 mmHg at the last primary care follow-up [\*\*].
- **Hyperlipidemia**: Managed with Atorvastatin 80 mg nightly, achieving LDL levels within the target range [17].
- Coronary Artery Disease: History of NSTEMI managed with percutaneous coronary intervention (PCI) and stent placement, currently on dual antiplatelet therapy with Aspirin and Clopidogrel [\*\*].
- Chronic Kidney Disease (CKD) Stage 3: Diagnosed around March 2025, likely secondary to his long-standing hypertension and diabetes. His management includes close monitoring of renal function and adjustments to medications to minimize nephrotoxicity. Recent serum creatinine stabilized at 1.7 mg/dL, with an eGFR of approximately 46 mL/min/1.73m<sup>2</sup> (\*\*)
- Heart Failure with Preserved Ejection Fraction (HFpEF): Diagnosed in June 2025 following an admission for symptoms suggestive of volume overload, including shortness of breath and bilateral ankle swelling. His heart failure is managed with Furosemide, Lisinopril, and Metoprolol succinate, emphasizing sodium and fluid restriction [\*\*] [\*\*].
- Orthostatic Hypotension: Episodes noted, particularly related to antihypertensive therapy adjustments [\*\*].

In recent months, Mr. Doe has generally reported improvement in his symptoms, attributing mild fatigue to increased activity levels. He's been adhering to his medication regimen, dietary restrictions, and fluid intake recommendations, completing a cardiac rehabilitation program, and maintaining regular physical activity [17].

Given his RUQ pain, considerations might include gallbladder issues (e.g., cholelithiasis, cholecystitis) given the postprandial onset of symptoms, as well as possible hepatic or pancreatic involvement. His history of CKD and HFpEF, coupled

## Clinical Foundation Models

#### Goals:

Build general models that can help us answer many different clinical questions

Operate over physiologic values & medical events instead of words

#### Technology:

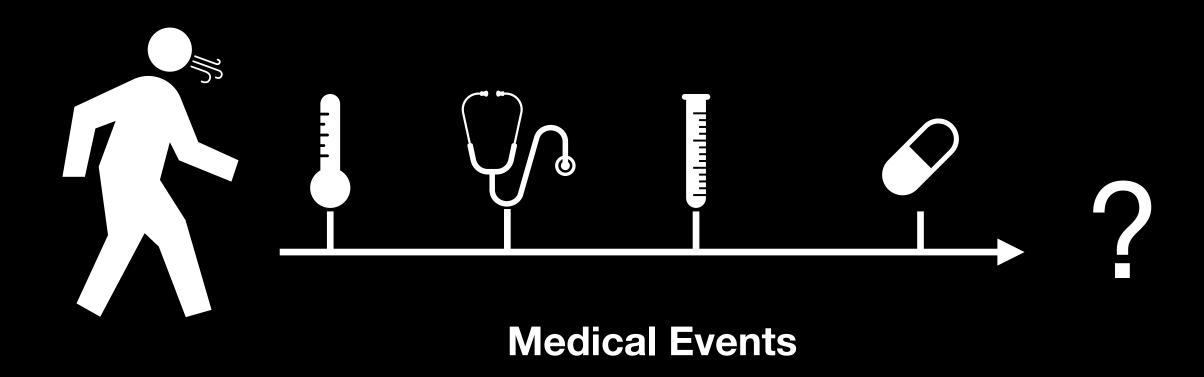
Transformer operating over all available EMR data

#### Landscape:

Hard to build hard to validate

**Natural Langauge** 

The quick brown fox jumps over ...?



## Similar to Recovery Trajectory Generation

Week 0 1 2 3

Diagnoses
Procedures
Aspirin

Week 0 1 2 3

LB Sprain
Chiro. Xray
Flexeril

Doesn't involve repurposing another Al model. Need to make special medical Al models.

Resource intensive

Computationally expensive

Massive data needs

Specialized engineering skills

Need to keep in mind

Privacy

Bias

Interprebility

Maintenance

